Spreadsheet Link™
User's Guide

A

MATLAB

R2017a «} MathWorks:

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Spreadsheet Link™ User's Guide
© COPYRIGHT 1996-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 1996

May 1997
January 1999
September 2000
April 2001

July 2002
September 2003
June 2004
September 2005
March 2006
September 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Sixth printing
Online only
Online only
Online only
Online only
Online only
Seventh printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0

Revised for Version 1.0.3

Revised for Version 1.0.8 (Release 11)
Revised for Version 1.1.2

Revised for Version 1.1.3

Revised for Version 2.0 (Release 13)
Revised for Version 2.1 (Release 13SP1)
Revised for Version 2.2 (Release 14)
Revised for Version 2.3 (Release 14SP3)
Revised for Version 2.3.1 (Release 2006a)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.5 (Release 2007a)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.0.1 (Release 2008a)
Revised for Version 3.0.2 (Release 2008b)
Revised for Version 3.0.3 (Release 2009a)
Revised for Version 3.1 (Release 2009b)
Revised for Version 3.1.1 (Release 2010a)
Revised for Version 3.1.2 (Release 2010b)
Revised for Version 3.1.3 (Release 2011a)
Revised for Version 3.1.4 (Release 2011b)
Revised for Version 3.1.5 (Release 2012a)
Revised for Version 3.1.6 (Release 2012b)
Revised for Version 3.1.7 (Release 2013a)
Revised for Version 3.2 (Release 2013b)
Revised for Version 3.2.1 (Release 2014a)
Revised for Version 3.2.2 (Release 2014b)
Revised for Version 3.2.3 (Release 2015a)
Revised for Version 3.2.4 (Release 2015b)
Revised for Version 3.2.5 (Release 2016a)
Revised for Version 3.3 (Release 2016b)
Revised for Version 3.3.1 (Release 2017a)

Contents

1

Getting Started
Spreadsheet Link Product Description 1-2
Key Features i, 1-2
Installation 1-3
Product Installation 1-3
Files and Folders Created by the Installation 1-3
After You Upgrade the Spreadsheet Link Software 1-3
Add-In Setup e 1-5
Configure Microsoft Excel 1-5
Work with the Microsoft Visual Basic Editor 1-9
Setting Spreadsheet Link Preferences 1-10
Preferences Dialog Box 1-10
Preferences in Worksheet Cells 1-11
Start and Stop Spreadsheet Link and MATLAB 1-13
Start Spreadsheet Link and MATLAB Automatically 1-13
Start Spreadsheet Link and MATLAB Manually 1-13
Connect to an Already Running MATLAB Session 1-13
Specify the MATLAB Startup Folder 1-14
Stop Spreadsheet Link and MATLAB 1-15
Create Diagonal Matrix Using Microsoft Excel Ribbon . .. 1-16
Create Diagonal Matrix Using Microsoft Excel Context
Menu 1-19
Create Diagonal Matrix Using Worksheet Cells 1-23
Create Diagonal Matrix Using VBA Macro 1-26

vi

Contents

Find and Execute MATLAB Function Using MATLAB
Function Wizard 1-28

Find Custom MATLAB Function Using MATLAB Function
Wizard e 1-32

Return Multiple Output Arguments from MATLAB

Function 1-35
Convert Dates Between Microsoft Excel and MATLAB 1-38
Localization Information 1-39
Executing Spreadsheet Link Functions 1-40

Spreadsheet Link and Microsoft Excel Function Differences 1-40
Spreadsheet Link Function Types 1-40
Spreadsheet Link Function Execution Method 1-41
Specify Spreadsheet Link Function in Microsoft Excel 1-42
Set Calculation Mode 1-43
Specify Spreadsheet Link Function Arguments 1-43
Specify MATLAB Function in MATLAB Function Wizard . . 1-45

Solving Problems with the Spreadsheet Link

2|

Software

Model Data Using Regression and Curve Fitting 2-2
Model Data in Worksheet 2-3
Model Data Using VBA Macro 2-5
Interpolate Thermodynamic Data 2-10
Price Stock Options Using Binomial Model 2-15
Plot Efficient Frontier of Financial Portfolios 2-19
Map Time and Bond Cash Flows 2-23

Error Messages and Troubleshooting

3

Worksheet Cell Errors 3-2
Microsoft Excel Exrrors 3-5
Data Exrrors e 3-8
Matrix Data Exrors 3-8
Errors When Opening Saved Worksheets 3-8
License Errors e 3-10
Startup Errors 3-11
MATLAB Automatic Start Exror 3-11
MATLAB Version Errors 3-11
Audible Error Signals 3-13

Functions — Alphabetical List

4

vii

Getting Started

+ “Spreadsheet Link Product Description” on page 1-2

+ “Installation” on page 1-3

+ “Add-In Setup” on page 1-5

+ “Setting Spreadsheet Link Preferences” on page 1-10

+ “Start and Stop Spreadsheet Link and MATLAB” on page 1-13

+ “Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

+ “Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
+ “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

* “Create Diagonal Matrix Using VBA Macro” on page 1-26

* “Find and Execute MATLAB Function Using MATLAB Function Wizard” on page
1-28

+ “Find Custom MATLAB Function Using MATLAB Function Wizard” on page 1-32
+ “Return Multiple Output Arguments from MATLAB Function” on page 1-35

* “Convert Dates Between Microsoft Excel and MATLAB” on page 1-38

* “Localization Information” on page 1-39

+ “Executing Spreadsheet Link Functions” on page 1-40

1 Getting Started

Spreadsheet Link Product Description

1-2

Use MATLAB from Microsoft Excel

Spreadsheet Link connects Excel® spreadsheet software with the MATLAB® workspace,
enabling you to access the MATLAB environment from an Excel spreadsheet. With
Spreadsheet Link software, you can exchange data between MATLAB and Excel, taking
advantage of the familiar Excel interface while accessing the computational speed and
visualization capabilities of MATLAB.

Key Features

+ Data preprocessing, editing, and viewing in the familiar Excel environment
* Sophisticated analysis of Excel data using MATLAB and application toolboxes

* Delivery of Excel based applications, using MATLAB as a computational and graphics
engine and Excel as an interface

+ Interactive selection of available functions using the MATLAB Function Wizard

* Visual interface for customization of all Spreadsheet Link preferences

Installation

Installation

In this section...

“Product Installation” on page 1-3
“Files and Folders Created by the Installation” on page 1-3
“After You Upgrade the Spreadsheet Link Software” on page 1-3

Product Installation

Install the Microsoft® Excel product before you install the MATLAB and Spreadsheet
Link software. To install the Spreadsheet Link add-in, follow the instructions in the
MATLAB installation documentation. Select the Spreadsheet Link check box when
choosing components to install.

Notes: If you have several versions of MATLAB installed on your computer, Spreadsheet
Link uses the version that you registered last.

To install the Spreadsheet Link add-in, you need administrator system privileges on the
computer. Contact your system administrator to enable these privileges.

Files and Folders Created by the Installation

Note: The MATLAB root folder, matlabroot, is where MATLAB is installed on your
system.

The Spreadsheet Link installation program creates a subfolder under
matlabroot\toolbox\. The exlink folder contains these files:

+ excllink.xlam: The Spreadsheet Link add-in for Microsoft Excel
+ ExBiSamp.xls: Spreadsheet Link example files described in this documentation

After You Upgrade the Spreadsheet Link Software

If MATLAB and Spreadsheet Link are installed on your computer, to upgrade to a newer
version:

1-3

1 Getting Started

1-4

Install the new version of MATLAB and Spreadsheet Link.
Start MATLAB and a Microsoft Excel session.

Configure the Spreadsheet Link software. For details, see “Add-In Setup” on page
1-5.

If you have existing workbooks with macros that use Spreadsheet Link, update
references to Spreadsheet Link in each workbook.

To update the references in an existing workbook in Microsoft Excel:

1

O b WD

In a Microsoft Excel session, open the Visual Basic® Editor window by clicking
Visual Basic on the Developer tab. (If you do not find the Developer tab, see the
Excel Help.)

In the left pane, select a module for which you want to update a reference.

From the main menu, select Tools > References.

In the References dialog box, select the SpreadsheetLink2007_2010 check box.
Click OK.

More About

“Add-In Setup” on page 1-5

Add-In Setup

Add-In Setup

In this section...

“Configure Microsoft Excel” on page 1-5
“Work with the Microsoft Visual Basic Editor” on page 1-9

Configure Microsoft Excel

To enable the Spreadsheet Link add-in, start a Microsoft Excel session and follow these
steps.

If you use Microsoft Excel 2007:

Click ", the Microsoft Office button.
2 Click Excel Options. The Excel Options dialog box opens.

If you use Microsoft Excel 2010 and later versions:

1 Select File from the main menu.

2 Click Options. The Excel Options dialog box opens.

The next steps are the same for both versions:

Click Add-Ins.

From the Manage selection list, choose Excel Add-Ins.
Click Go. The Add-Ins dialog box opens.

Click Browse.

Select matlabroot\toolbox\exlink\excllink.xlam.

Click Open. In the Add-Ins dialog box, the Spreadsheet Link for use with
MATLAB and Excel check box is selected.

o O A WD —~

1-5

1 Getting Started

Add-Ins

Add-Ins available:

[] Analysis ToolPak - oK
[] Analysis ToolPak - VBA

|:|Eur::| Currency Tools Cancel

[salver Add-in

Spreadsheet Link 3.2.5 for use with MATLAE and Excel Browse...

1 §

Automation...

Spreadsheet Link 3.2.5 for use with MATLAE and Excel
Spreadsheet Link 3.2.5 for use with MATLAE and Excel

7 Click OK to close the Add-Ins dialog box.
8 Click OK to close the Excel Options dialog box.

The Spreadsheet Link add-in loads now and with each subsequent Excel session.

The MATLAB Command Window button appears on the Microsoft Windows® taskbar.

The MATLAB group appears on the top right of the Home tab in your Excel worksheet.

Add-In Setup

i #

wort & Find &
ilter =~ Select -

19 | 4 start MATLAE
Send data to MATLAE

-

Send named ranges to MATLAE
et data from MATLAE

Fun MATLAE cammand

Get MATLAE figure

MATLAE Function YWizard

Preferences

Spreadsheet Link is ready for use.

Right-click a cell to list the MATLAB options.

1-7

1 Getting Started

Calibri - 11 = A" A" $ - % o [ad

B I =EO-A-

I
'5?3
2

.0 .00 _
00 .0

Cu

I+

Copy
Paste Options:

Paste Special...

Insert...

Delete...

Clear Contents

Filter 3
Sort 3

Insert Comment

P U

Format Cells...
Pick From Drrop-down List...

Define Mame...

% Hyperlink...

MATLABE * 5end data to MATLAB

Send named ranges to MATLAE
Get data from MATLAB

Run MATLAE command

Get MATLAE figure

Function Wizard

1-8

Add-In Setup

Note: If the options are missing from the context menu and if the Trust Center dialog box
has the Require Application Add-ins to be signed by Trusted Publisher check box
selected, then you must click the Enable Content button for every session.

To check the settings in the Trust Center dialog box:

1 Click the Developer tab.

2 Inthe Code group, click the Macro Security button. The Trust Center dialog box
opens.

3 Click Add-ins.

Work with the Microsoft Visual Basic Editor

To enable Spreadsheet Link as a Reference in the Microsoft Visual Basic Editor:

1 Open a Visual Basic session. Click the Visual Basic button on the Developer tab,
or press Alt+F11.

Note: For instructions about displaying the Developer tab, see Excel Help.

2 In the Visual Basic toolbar, select Tools > References.

3 In the References — VBA Project dialog box, select the SpreadsheetLink or
SpreadsheetLink2007_2010 check box.

4 Click OK.

See Also

matlabroot

More About

. “Installation” on page 1-3

1-9

1 Getting Started

Setting Spreadsheet Link Preferences

In this section...

“Preferences Dialog Box” on page 1-10

“Preferences in Worksheet Cells” on page 1-11

To control how Spreadsheet Link and MATLAB behave when Spreadsheet Link starts
MATLAB in Microsoft Excel, you can set preferences with the Preferences dialog box or
within individual worksheet cells.

Preferences Dialog Box

1 Click Preferences in the MATLAB group. The MATLAB group appears to the top
right of the Home tab in your Excel worksheet.

1-10

Sefting Spreadsheet Link Preferences

o

Preferences

[istart MATLAE at Excel startup

MATLAE program id

| 2.0

MATLAE startup folder

[™ Use MATLAB desktop

[~ Show MATLAE errors

r Force use of MATLAB cell arrays with
MLPutMatrix

[Treat missing/empty cells as MNaM

Ok Cancel

===

B =

2 Set your preferences by selecting check boxes and filling in the text boxes. For
the MATLAB program id, enter the MATLAB version as shown in the Windows
registry. For the MATLAB startup folder, enter the full path of the startup folder.

Preferences in Worksheet Cells

To set a preference in a worksheet cell in Microsoft Excel, enter text that runs the
corresponding Spreadsheet Link function in the worksheet cell. For example, to set the

MATLAB version in a worksheet cell:

1 Set the MATLAB version to 9.0, which corresponds to MATLAB R2016a, by entering

this text.

=MLProgramld(*'9.0")

1-11

1 Getting Started

A B
1 |:MLPrugramld|{"9.D"}|

2 To run the function, press enter.

For details, see MLProgramid.

See Also
MLPutMatrix

More About

. “Worksheet Cell Errors” on page 3-2
. “Startup Errors” on page 3-11

1-12

Start and Stop Spreadsheet Link and MATLAB

Start and Stop Spreadsheet Link and MATLAB

In this section...

“Start Spreadsheet Link and MATLAB Automatically” on page 1-13
“Start Spreadsheet Link and MATLAB Manually” on page 1-13
“Connect to an Already Running MATLAB Session” on page 1-13
“Specify the MATLAB Startup Folder” on page 1-14

“Stop Spreadsheet Link and MATLAB” on page 1-15

Start Spreadsheet Link and MATLAB Automatically

When installed and configured according to the instructions in “Add-In Setup” on page
1-5, the Spreadsheet Link and MATLAB software automatically start when you start a
Microsoft Excel session.

Start Spreadsheet Link and MATLAB Manually

1 Select Tools > Macro.

+ In Excel 2007, click the View or Developer tab, and then click the Macros
button.

+ In Excel 2010, click the View menu and select Macros on the Excel toolstrip, and
then click View Macros.

2 Enter matlabinit into the Macro Name/Reference field.

3 Click Run. The MATLAB Command Window button appears on the Microsoft
Windows taskbar.

Connect to an Already Running MATLAB Session

By default, Spreadsheet Link starts a new MATLAB session. Alternatively, it can
connect to an already running MATLAB session.

Note: If several versions of MATLAB are installed on your computer, Spreadsheet
Link always uses the last registered version. If you try to connect to an already running
MATLAB session that is not the last registered version, Spreadsheet Link starts a new

1-13

1 Getting Started

1-14

MATLAB session. Spreadsheet Link does not connect to the existing one. To change the
last registered version, see “Startup Errors” on page 3-11.

To connect a new Excel session to an already running MATLAB session:

1 In MATLAB, enter the following command:

enableservice("AutomationServer"®,true)

This command converts a running MATLAB session into an Automation server.

2 Start a new Excel session. It automatically connects to the running MATLAB
session.

Alternatively, you can start MATLAB as an automation server from the beginning. To
start MATLAB as an automation server, use the automation command-line option:

matlab -automation

This command does not start MATLAB in a full desktop mode. To do so, use the -
desktop option:

matlab -automation -desktop

If you always use MATLAB as an automation server, modify the shortcut that you use to
start MATLAB:

1 Right-click your MATLAB shortcut icon. (You can use the icon on your desktop or in
the Windows Start menu.)

2 Select Properties.
Click the Shortcut tab.

4 Add -automation in the Target field. Remember to leave a space between
matlab.exe and —automation.

5 Click OK.

w

For details, see “Manually Create Automation Server” (MATLAB).

Specify the MATLAB Startup Folder

MATLAB starts in the MATLAB root folder and completes the initialization. After
starting, MATLAB changes to the Spreadsheet Link MATLAB startup folder. For details
about specifying the startup folder, see MLStartDir.

Start and Stop Spreadsheet Link and MATLAB

Stop Spreadsheet Link and MATLAB

If you started the Spreadsheet Link and MATLAB software from the Excel interface:

* To stop both the Spreadsheet Link and MATLAB software, close the Excel session as
you normally would.

+ To stop the Spreadsheet Link and MATLAB software and leave the Excel session
running, enter the =MLClose() command into an Excel worksheet cell. You can use
the MLOpen or matlabinit function to restart the Spreadsheet Link and MATLAB
sessions manually.

If you connected an Excel session to an existing MATLAB session, close Excel and
MATLAB sessions separately. Closing one session does not automatically close the other.

1-15

1 Getting Started

Create Diagonal Matrix Using Microsoft Excel Ribbon

1-16

This example shows how to execute Spreadsheet Link functions to export a named range
in a worksheet to MATLAB and create a diagonal matrix using the Microsoft Excel
ribbon.

The MATLAB group on the Microsoft Excel ribbon contains commands for common
Spreadsheet Link functions. For the list of common functions, see “Executing
Spreadsheet Link Functions” on page 1-40.

This example assumes that MATLAB is running after Microsoft Excel opens. For starting
MATLAB, see “Start and Stop Spreadsheet Link and MATLAB” on page 1-13.

In a worksheet, enter the numbers 1 through 5 into the range of cells from Al through
E1l. Define the name testData for this range of cells and select it. For instructions, see

Excel Help and enter the search term: define and use names in formulas.

The named range testData appears in the Name Box.

testData - Je 1

A B C D E
1 1 2 3 3 5

On the Home tab of the Microsoft Excel ribbon, click the MATLAB group in the top-right
corner. Then, select Send named ranges to MATLAB. When you select this command,
the software executes MLPutRanges.

Create Diagonal Matrix Using Microsoft Excel Ribbon

27 @ |\
wort & Find &
ilter =~ Select -
19 | 4 start MATLAE

Send data to MATLAER

-

Send named ranges to MATLAE
et data from MATLAE

Fun MATLAE cammand

Get MATLAE figure

MATLAE Function YWizard
Preferences

Microsoft Excel exports the named range testData into the MATLAB variable
testData in the MATLAB workspace.

Comrmand Windoa & | Workspace]
(@) Mew to MATLABT Watch this Video, see Examples, orre | Mame Walue hin hax
>> testlata [testData [12,3,45] 1 5
testhata =
1 2 3 4 =1
fr >

Select the MATLAB group option Run MATLAB Command. When you select this
command, Microsoft Excel displays a dialog box. Next, create a diagonal matrix. Use the
diag function to specify testData as the input argument and d as the output argument.
Enter this MATLAB command in the dialog box and click OK.

d = diag(testData)

The software executes the MLEvalString function. The MATLAB variable d appears in
the MATLAB workspace and contains a diagonal matrix.

1-17

1 Getting Started

Retrieve the diagonal matrix into the worksheet by selecting cell A3. Select the MATLAB
group option Get data from MATLAB. When you select this command, Microsoft Excel
displays a dialog box. Retrieve the diagonal matrix in d by entering d in the dialog box
and clicking OK. The software executes the MLGetMatrix function.

The diagonal matrix displays in cells A3 through E7.

A E C D E

1 1 2 3 4 5
2

3 | 1.| 0 0 0 0
4 0 2 0 0 0
2 0 0 3 0 0
6 0 0 0 4 0
7 0 0 0 0 3

See Also
MLEvalString | MLGetMatrix | MLPutRanges

More About

. “Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

. “Executing Spreadsheet Link Functions” on page 1-40

1-18

Create Diagonal Matrix Using Microsoft Excel Context Menu

Create Diagonal Matrix Using Microsoft Excel Context Menu

This example shows how to execute Spreadsheet Link functions to export a named range
in a worksheet to MATLAB and create a diagonal matrix using the Microsoft Excel
context menu.

The MATLAB group menu in the Microsoft Excel context menu contains commands for
common Spreadsheet Link functions. For the list of common functions, see “Executing
Spreadsheet Link Functions” on page 1-40.

This example assumes that MATLAB is running after Microsoft Excel opens. For details,
see “Start and Stop Spreadsheet Link and MATLAB” on page 1-13.

In a worksheet, enter the numbers 1 through 5 into the range of cells from Al through
E1l. Define the name testData for this range of cells and select it. For instructions, see

Excel Help and enter the search term: define and use names in formulas.

The named range testData appears in the Name Box.

testData - Je 1

A B C D E
1 1 2 3 3 5

To find the command that exports the named range to MATLAB, right-click another cell
outside of the named range in the worksheet. The Microsoft Excel context menu appears.
To see the MATLAB group menu, select MATLAB.

1-19

1 Getting Started

Calibi + 11 ~ A" A" $ - % o [
B I = 0-A- %o 70
& Cu
Copy
Paste Options:

=

Paste Special...

I+

B &

Insert...

Delete...

Clear Contents

Filter 3

Sort 3

Insert Comment

i o

Format Cells...

Pick From Drrop-down List...

Define Mame...

g) Hyperlink...

MATLAB * Send data to MATLAE
Send named ranges to MATLAE
Get data from MATLAB k
Run MATLAE command
Get MATLAE figure
Function Wizard

Select Send named ranges to MATLAB. When you select this command, the software
executes MLPutRanges.

1-20

Create Diagonal Matrix Using Microsoft Excel Context Menu

Microsoft Excel exports the named range testData into the MATLAB variable
testData in the MATLAB workspace.

Cormrmand Window ® | | Workspace ®
'? Meww to MATLABT Wifatch this Video, see Exarnples, orre | Mame Walue Min hlax
> teatData] testData [1,2,3,4,5] 1 5

testDhata =

Select the MATLAB group option Run MATLAB Command. When you select this
command, Microsoft Excel displays a dialog box. Next, create a diagonal matrix. Use the
diag function to specify testData as the input argument and d as the output argument.
Enter this MATLAB command in the dialog box and click OK.

d = diag(testData)

The software executes the MLEvalString function. The MATLAB variable d appears in
the MATLAB workspace and contains a diagonal matrix.

Retrieve the diagonal matrix into the worksheet. First select cell A3, and then select
the MATLAB group option Get data from MATLAB > d. The software executes the
MLGetMatrix function.

The diagonal matrix displays in cells A3 through E7.

1-21

1 Getting Started

A E C D E

1 1 2 3 4 5
2

3 | 1.| 0 0 0 0
4 0 2 0 0 0
2 0 0 3 0 0
& 0 0 0 4 0
7 0 0 0 0 5

See Also
MLEvalString | MLGetMatrix | MLPutRanges

More About

. “Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16
. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

. “Executing Spreadsheet Link Functions” on page 1-40

1-22

Create Diagonal Matrix Using Worksheet Cells

Create Diagonal Matrix Using Worksheet Cells

This example shows how to execute Spreadsheet Link functions to export a named
range in the worksheet to MATLAB and create a diagonal matrix using Microsoft Excel
worksheet cells.

The example assumes that MATLAB is running after Microsoft Excel opens. For details,
see “Start and Stop Spreadsheet Link and MATLAB” on page 1-13.

In a worksheet, enter the numbers 1 through 5 into the range of cells from Al through
E1l. Define the name testData for this range of cells and select it. For instructions, see
Excel Help and enter the search term: define and use names in formulas.

The named range testData appears in the Name Box.

testData - Je 1

A B C D E
1 1 2 3 1 5

Enter the Spreadsheet Link function MLPutRanges directly into the worksheet cell as a
worksheet formula. Double-click cell A3. Enter this text.

=MLPutRanges()

Press Enter. Microsoft Excel exports the named range testData into the MATLAB
variable testData in the MATLAB workspace. After a Spreadsheet Link function
successfully executes as a worksheet formula, the cell contains the value 0. While the
function executes, the cell shows the entered formula.

Corarmand Window ™ Mdorkspace @
'? Meww to MATLABT Wifatch this Video, see Exarmples, orre | Mame Walue rin B

> testData] testData [1,2,3,4,5] 1 5

testDhata =

1-23

1 Getting Started

1-24

Double-click cell A5. Next, create a diagonal matrix. Use the diag function to specify
testData as the input argument and d as the output argument. The Spreadsheet Link
function MLEvalString executes the MATLAB command. Enter this text.

=MLEvalString('d = diag(testData);")

Press Enter. MATLAB executes the diag function. The MATLAB variable d appears in
the MATLAB workspace and contains the diagonal matrix.

Double-click cell A7. Now retrieve the diagonal matrix into the worksheet using the
Spreadsheet Link function MLGetMatrix. Enter this text.

=MLGetMatrix('d",""A9™)

The diagonal matrix displays in cell A9 through E13.

A B C D E
1 1 2 3 A 5
2
3 0
4
5 0
6
7 0
8 :.
9 1 0 0 0 0
10 0 2 0 0 0
11 0 0 3 0 0
12 0 0 0 4 0
13 0 0 0 0 5

See Also

MLEvalString | MLGetMatrix | MLPutMatrix | MLPutRanges

More About
. “Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

Create Diagonal Matrix Using Worksheet Cells

“Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
“Create Diagonal Matrix Using VBA Macro” on page 1-26
“Executing Spreadsheet Link Functions” on page 1-40

1-25

1 Getting Started

Create Diagonal Matrix Using VBA Macro

1-26

This example shows how to execute Spreadsheet Link functions to export a named range
in the worksheet to MATLAB and create a diagonal matrix using a Microsoft Excel VBA
macro.

The example assumes that MATLAB is running after Microsoft Excel opens. For details,
see “Start and Stop Spreadsheet Link and MATLAB” on page 1-13.

In a worksheet, enter the numbers 1 through 5 into the range of cells from Al through
E1l. Define the name testData for this range of cells and select it. For instructions, see
Excel Help and enter the search term: define and use names in formulas.

The named range testData appears in the Name Box.

testData - J 1

A E C D E

On the Developer tab in Microsoft Excel, click Visual Basic. The Visual Basic Editor
window opens.

Insert a new module and create a diagonal matrix from the data in testData. To insert
the module, select Insert > Module. In the Code section, enter this VBA code that
contains a macro named Diagonal.

Sub Diagonal ()
MLPutRanges
MLEvalString "b = diag(testData);"
MLGetMatrix "b*", "A3"
MatlabRequest

End Sub

The Diagonal macro exports the named range into the MATLAB variable testData
using the MLPutRanges function. Then, the macro uses the MLEval String function
to execute MATLAB code. The MATLAB code creates a diagonal matrix from the data
in testData using the diag function. The code assigns the diagonal matrix to the
MATLAB variable b. Then, the macro uses the MLGetMatrix function to import the
diagonal matrix into the worksheet.

Create Diagonal Matrix Using VBA Macro

Copy and paste the code into the Visual Basic Editor from the HTML version of the
documentation.

For details about working with modules, see Excel Help.

Run the macro by clicking Run Sub/UserForm (F5). For details about running macros,
see Excel Help.

The diagonal matrix displays in the worksheet cells A3 through E7.

A E C D E

1 1 2 3 4 5
2

3 | 1.| 0 0 0 0
4 0 2 0 0 o
5] 0 0 3 0 0
5] 0 0 0 4 o
7 0 0 0 0 5

See Also
diag | MLEvalString | MLPutRanges

More About

. “Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

. “Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

. “Executing Spreadsheet Link Functions” on page 1-40

1-27

1 Getting Started

Find and Execute MATLAB Function Using MATLAB Function
Wizard

1-28

This example shows how to find and execute the triu function using the MATLAB
Function Wizard for Spreadsheet Link. You can use the Function Wizard to find any
MATLAB function.

First, open the MATLAB Function Wizard from Microsoft Excel. From the Home
tab, select the MATLAB group option MATLAB Function Wizard. Locate the triu
MATLAB function, choose the function signature, and then execute it.

Find and Execute MATLAB Function Using MATLAB Function Wizard

MATLAR Function Wizard

1. Select a category:

I matlablelmat - Elementary matrices and matrix manipj Update |

2, Select a function:

fril “
frue —
vander LI

3. Select a function signature:

TRIU(X)

TRIU(K,K)
triu

Function Help:

TRIL Extract upper triangular part.
TRIU(X) is the upper triangular part of X,
TRIU(X, K] is the elements on and above the K-th diagonal of
¥, K =0is the main diagonal, K = 0 is above the main
diagonal and K < 0is below the main diagonal.

See also TRIL, DIAG.

_ o »

Alternatively, you can execute the function in a Microsoft Excel worksheet cell by using
Spreadsheet Link function matlabfcn or matlabsub.

List Folders and Function Categories

All folders or categories in the current search path appear in the Select a category
field of the MATLAB Function Wizard. Click an entry to select it. Each entry in the list
appears as a folder path and a description read from the Contents.m file in that folder.
If no Contents.m file is found, the category list displays contains this message:

1-29

1 Getting Started

1-30

finance\finsupport -(No table of contents file)
Refresh and Select Category
Click Update to refresh the category list. For details about the search path, see path.

The Select a function field displays a list of available functions for that category. Click
the function name you want to execute. For help with the selected function, view the

Function Help field.
Select Function Signature and Enter Formula

The Select a function signature field displays available signatures for that function.
Click a function signature to select it. The Function Arguments dialog box appears.

Function Argurnents @

TRIU Inputs: - |

Optional output cell(s): |

TRIU Extract upper triangular part.
TRIU(X) is the upper triangular part of X,
TRIU(X K] is the elements on and above the K-th diagonal of
X, K =0is the main diagonal, K = 0 is above the main
diagonal and K < 0 is below the main diagonal. ﬂ

CIK|

Specify the worksheet cell that contains the input argument X. By default, the output of
the selected function appears in the current worksheet cell using the Spreadsheet Link

function matlabfcn.

See Also

matlabfcn | matlabsub

More About

. “Find Custom MATLAB Function Using MATLAB Function Wizard” on page
1-32

Find and Execute MATLAB Function Using MATLAB Function Wizard

“Executing Spreadsheet Link Functions” on page 1-40

1-31

1 Getting Started

Find Custom MATLAB Function Using MATLAB Function Wizard

1-32

This example shows how to write a custom function and find it using the MATLAB
Function Wizard for Spreadsheet Link. To execute MATLAB functions using the
MATLAB Function Wizard, see “Find and Execute MATLAB Function Using MATLAB

Function Wizard” on page 1-28.

Create and save a custom function in MATLAB. First, create a help header in the
function that contains supported function signatures to use with the MATLAB Function
Wizard. Write the function that calculates the Fibonacci numbers, and then save the
function in the folder Documents\MATLAB.

function £ = Ffibonacci(n)
% FIBONACCI(N) Calculate the Nth Fibonacci number.
% N must be a positive integer.

ifn<O
error("Invalid number.")
elseif n ==0
f = 0;
elseif n==1
f=1;
else

f = fibonacci(n - 1) + fibonacci(n - 2);
end;
end

For writing MATLAB functions, see “Create Functions in Files” (MATLAB).

Add the folder where you saved the function to the MATLAB search path. You can use
the pathtool function or select Set Path in the MATLAB Toolstrip.

Open the MATLAB Function Wizard in Microsoft Excel using either the Microsoft Excel
ribbon or context menu. Select the folder where you saved your function.

Find Custom MATLAB Function Using MATLAB Function Wizard

MATLAR Function Wizard ==

.o

1. Select a category:

I DocumentsMATLAE - {Mo table of contents file) j Update |

2, Select a function:
fibonacc

3. Select a function signature:

FIBOMACCI{MN)
fibonacc

Function Help:

FIBOMACCI(M) Compute the Nth Fibonacad number.,
M must be a positive integer.

Ok |

To execute this function, follow the steps in “Find and Execute MATLAB Function Using
MATLAB Function Wizard” on page 1-28.

See Also

matlabfcn | matlabsub

1-33

1 Getting Started

More About
. “Find and Execute MATLAB Function Using MATLAB Function Wizard” on page
1-28

. “Executing Spreadsheet Link Functions” on page 1-40

1-34

Return Multiple Output Arguments from MATLAB Function

Return Multiple Output Arguments from MATLAB Function

This example shows how to execute a MATLAB function that returns multiple output
arguments in Microsoft Excel using a Microsoft Excel VBA macro. The macro writes
multiple output arguments from the MATLAB workspace to Microsoft Excel cells.

This example calculates the singular value decomposition of a matrix using svd.

In the Microsoft Excel cells from Al through C3, create a range of data. Enter numbers
from 1 through 3 in cells Al through A3. Enter numbers from 4 through 6 in cells B1
through B3. Enter numbers from 7 through 9 in cells C1 through C3.

X - § - 1
A B C D
1 I 2 3
2 4 3
3 7 8 9
[|
4

Create a Microsoft Excel VBA macro named applysvd. For details about creating
macros, see Excel Help.

Public Sub applysvd()
MLOpen
MLPutMatrix "x'", Range('A1:C3')
MLEvalString ("[u,s,v] = svd(X);')
MLGetMatrix "u', "A5"
MLGetMatrix ''s', "A9"
MLGetMatrix 'v'', "A13"
MatlabRequest
MLClose

End Sub

The macro:

1 Starts MATLAB.

2 Sends the data in the A1 through C3 cell range to the MATLAB workspace and
assigns it to the MATLAB variable x.

1-35

1 Getting Started

3 Runs svd with the input argument X and output arguments u, s, and v.

4 Individually retrieves data for one output argument into a specific Microsoft Excel
cell while accounting for the size of each output data matrix to avoid overwriting
data. For the first output argument, the macro retrieves the data for the output
argument U into cell A5.

5 Closes MATLAB.

Run applysvd. MATLAB runs svd and populates the specified cells with data from the
three output arguments.

A5 - fe
A B C

1 1 2 3

2 a 5

3 7 8 g

4

5 | -n.z14a_| 0.8872 0.4082

6 | -0.5206 0.2496 -0.8165

7 | -0.8263 -0.3879 0.4082

8

9 | 16.8481 0.0000 0.0000

10| 0.0000 1.0684 0.0000

11| 0.0000 0.0000 0.0000

12

13 -0.4797 -0.7767 0.4082
14 -0.5724 -0.0757 -0.8165
15 -0.6651 0.6253 0.4082
16

For details about running macros, see Excel Help.

See Also
MLClose | MLEvalString | MLGetMatrix | MLOpen | MLPutMatrix | svd

1-36

Return Multiple Output Arguments from MATLAB Function

More About

. “Create Diagonal Matrix Using VBA Macro” on page 1-26
. “Executing Spreadsheet Link Functions” on page 1-40

1-37

1 Getting Started

Convert Dates Between Microsoft Excel and MATLAB

1-38

Default Microsoft Excel date numbers represent the number of days that have passed
since January 1, 1900. For example, January 1, 1950 is represented as 18264 in the Excel
software.

However, MATLAB date numbers represent the number of days that have passed since
January 1, 0000, so January 1, 1950 is represented as 712224 in the MATLAB software.
Therefore, the difference in dates between the Excel software and the MATLAB software
1s a constant, 693960 (712224 minus 18264).

To use date numbers in MATLAB calculations, apply the 693960 constant as follows:

+ Add it to Excel date numbers that are read into the MATLAB software.
+ Subtract it from MATLAB date numbers that are read into the Excel software.

Note: If you use the optional Excel 1904 date system, the constant is 695422.

Dates are stored internally in the Excel software as numbers and are unaffected by
locale.

Related Examples

. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23
. “Create Diagonal Matrix Using VBA Macro” on page 1-26

Localization Information

Localization Information

This document uses Microsoft Excel with an English (United States) Microsoft
Windows regional setting for illustrative purposes. If you use Spreadsheet Link with a
non-English (United States) Windows desktop environment, certain syntactical
elements might not work as illustrated. For example, you might have to replace the
comma delimiter within Spreadsheet Link commands with a semicolon or other operator.

Please consult your Windows documentation to determine which regional setting
differences exist among non-U.S. versions.

Related Examples
. “Setting Spreadsheet Link Preferences” on page 1-10

1-39

1 Getting Started

Executing Spreadsheet Link Functions

Spreadsheet Link functions manage the connection and data exchange between Microsoft
Excel and MATLAB, without leaving the Microsoft Excel environment.

To execute Spreadsheet Link functions, you must:

* Understand the differences between these functions and Microsoft Excel functions.

+ Choose the right function type, execution method, and calculation mode for your
situation.

* Decide how to specify functions and arguments.

Spreadsheet Link and Microsoft Excel Function Differences

In Microsoft Excel, entering Spreadsheet Link functions can be similar to Microsoft Excel
functions. The differences include:

* Spreadsheet Link functions perform an action, while Microsoft Excel functions return
a value.

* Spreadsheet Link function names are case-insensitive. Entering either MLPutMatrix
or mlputmatrix executes the MLPutMatrix function.

+ MATLAB function names and variable names are case-sensitive. For example, BONDS,
Bonds, and bonds are three different MATLAB variables.

Spreadsheet Link Function Types
There are link management and data management functions in Spreadsheet Link.

Link management functions initialize, start, and stop the Spreadsheet Link and
MATLAB software. Execute the matlabinit function from the Excel Tools > Macro
menu or in macro subroutines.

Data management functions copy data between Microsoft Excel and the MATLAB
workspace. These functions execute MATLAB commands in Microsoft Excel. Except
for MLPutVar and MLGetVar, you can execute any data management function as a
worksheet cell formula or in a VBA macro. The MLPutVar and MLGetVar functions
execute only in VBA macros.

1-40

Executing Spreadsheet Link Functions

Spreadsheet Link Function Execution Method

You can execute Spreadsheet Link functions using these various methods.

Execution Method

Advantages

Limitations

Microsoft Excel ribbon

Quickly access common
Spreadsheet Link
functionality in the
MATLAB group:

+ matlabinit

* MLPutMatrix
* MLPutRanges
+ MLGetMatrix
* MLEvalString
* MLGetFigure

+ MATLAB Function
Wizard (For details,
see “Find and Execute
MATLAB Function
Using MATLAB
Function Wizard” on
page 1-28.)

+ Preferences (For details,
see “Setting Spreadsheet
Link Preferences” on
page 1-10.)

Full Spreadsheet Link
functionality is unavailable.

Microsoft Excel context
menu

Quickly access common
Spreadsheet Link
functionality in a worksheet
cell:

* MLPutMatrix

* MLPutRanges

+ MLEvalString

+ MLGetFigure

Full Spreadsheet Link
functionality is unavailable.

141

1 Getting Started

1-42

Execution Method

Advantages

Limitations

MATLAB Function
Wizard (For details,
see “Find and Execute
MATLAB Function
Using MATLAB
Function Wizard” on
page 1-28.)

MLGetMatrix

Microsoft Excel worksheet
cell

Execute any Spreadsheet
Link function.

Execute MATLAB
functions.

You cannot execute
MLGetVar, MLPutVar,
or matlabinit within a
worksheet cell.

Microsoft Excel VBA macro

Execute any Spreadsheet
Link function.

Execute MATLAB
functions.

Execute advanced VBA
code.

Requires knowledge of
Microsoft Visual Basic.

MATLAB Function Wizard

Find MATLAB function
by category or folder.

Explore MATLAB
function syntaxes.

Execute MATLAB
function by choosing a
syntax and specifying
arguments.

Execute custom
MATLAB function.

Execute a MATLAB function
using only the Spreadsheet
Link functions matlabfcn
and matlabsub.

Specify Spreadsheet Link Function in Microsoft Excel

When you specify a Spreadsheet Link function in a worksheet cell, enter the formula
by starting with a + or = sign. Then, enclose function arguments in parentheses. This
example formula uses the MLPutMatrix function to export data in cell C10 into matrix A.

Executing Spreadsheet Link Functions

=MLPutMatrix("'A",C10)

In VBA macros, leave a space between the function name and the first argument. Do not
use parentheses.

MLPutMatrix "A™,C10

To change the active cell when an operation completes, select Excel Tools Options >
Edit > Move Selection after Enter. This action provides a useful confirmation for
lengthy operations.

Set Calculation Mode

Spreadsheet Link functions are most effective in automatic calculation mode. To
automate the recalculation of a Spreadsheet Link function, add a cell reference to a cell
whose value changes. For example, the MLPutMatrix function executes again when the
value in cell C1 changes.

=MLPutMatrix(''bonds"™, D1:G26) + C1
To use MLPutMatrix in manual calculation mode:

1 Enter the function into a cell.
2 Press F2.
3 Press Enter. The function executes.

Spreadsheet Link functions do not automatically adjust cell addresses. If you use explicit
cell addresses in a function, edit the function arguments to reference a new cell address
when you:

+ Insert or delete rows or columns.
+ Move or copy the function to another cell.
Specify Spreadsheet Link Function Arguments

You can specify arguments in Spreadsheet Link functions using the variable name or by
referencing the data location for the argument.

Note: Spreadsheet Link functions expect the default reference style (A1) worksheet cell
references. The columns must be designated with letters and the rows with numbers. If

1-43

1 Getting Started

1-44

your worksheet shows columns designated with numbers instead of letters, then follow
this procedure:

1 Select Tools > Options.

2 Click the General tab.
3 Under Settings, clear the R1C1 reference style check box.

Variable-Name Arguments

You can directly or indirectly specify a variable-name argument in most Spreadsheet
Link functions.

* To specify a variable name directly, enclose it in double quotation marks, for
example, =MLDeleteMatrix(*'Bonds').

To specify a variable name as an indirect reference, enter it without quotation
marks. The function evaluates the contents of the argument to retrieve the
variable name. The argument must be a worksheet cell address or range name; for
example, =MLDe leteMatrix(C1).

Note: Spreadsheet Link functions do not support global variables. When exchanging data
between Excel and MATLAB, the software uses the base workspace. Variables in the
base workspace exist until you clear them or end your MATLAB session.

Data-Location Arguments

A data-location argument must be a worksheet cell address or range name.

Do not enclose a data-location argument in quotation marks (except in MLGetMatrix,
which has unique argument conventions).

A data-location argument can include a worksheet number such as Sheet3!B1:C7 or
Sheet2!0UTPUT.

Tip: You can reference special characters as part of a worksheet name in

MLGetMatrix or MLPutMatrix by enclosing the worksheet name within single
quotation marks (" 7).

Executing Spreadsheet Link Functions

Specify MATLAB Function in MATLAB Function Wizard

After you find the MATLAB function or custom function in the MATLAB Function
Wizard, you can specify the syntax and arguments. Then, Spreadsheet Link specifies this
command for evaluation in the MATLAB workspace.

To execute a MATLAB function with multiple outputs, specify where to write the output.

Specifying a target range of cells using the Optional output cell(s) field causes

the selected function to appear in the current worksheet cell as an argument of
matlabsub. The matlabsub function includes an argument that indicates where to
write the output. For example, the data from A2 is input to the rand function and the
target cell for output is B2:

=matlabsub('rand",""Sheetl11B2",Sheetl!1A2)

Although the Function Wizard lets you specify multiple output cells, it does not
return multiple outputs. If you specify a range of output cells, the wizard returns
the first output argument starting in the first output cell. For example, if a function
returns two elements a and b, and you specify A1:A2 as output cells, the Function
Wizard displays a in cell ALl. The Function Wizard discards element b. If an output
is a matrix, the Function Wizard displays all elements of that matrix starting in the
first output cell.

For multiple output arguments, see “Return Multiple Output Arguments from
MATLAB Function” on page 1-35.

To execute multiple MATLAB functions or use MATLAB objects, write a wrapper
function.

The Function Wizard does not allow simultaneous execution of multiple MATLAB
functions. Write a wrapper function instead. For example, to plot historical closing-

price data from Bloomberg®, enter this code in MATLAB and save it as a function.

function plotbloombergdata(s)
¢ plotbloombergdata is a wrapper function that connects to
¢ Bloomberg(R), retrieves historical closing-price data for
% the year 2015, and plots the prices for a given
¢ Bloomberg(R) security s.
c = blp;
f = "LAST_PRICE";
fromdate "01/01/2015";
todate = "12/31/2015";

XX

X

1-45

1 Getting Started

d = history(c,s,f,fromdate, todate);
plot(d(:,1),d(:,2))
close(c)
end
For details about writing functions, see “Create Functions in Files” (MATLAB).

* Microsoft Excel has no context for MATLAB objects. To work with MATLAB objects,
such as connections to service providers, write a wrapper function. The wrapper
function executes the functions that create and manipulate these objects.

See Also

matlabfcn | matlabinit | MLEvalString | MLGetMatrix | MLPutMatrix

More About

. “Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

. “Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

. “Find and Execute MATLAB Function Using MATLAB Function Wizard” on page
1-28

. “Localization Information” on page 1-39

1-46

Solving Problems with the
Spreadsheet Link Software

* “Model Data Using Regression and Curve Fitting” on page 2-2
* “Interpolate Thermodynamic Data” on page 2-10

+ “Price Stock Options Using Binomial Model” on page 2-15

+ “Plot Efficient Frontier of Financial Portfolios” on page 2-19

+ “Map Time and Bond Cash Flows” on page 2-23

2 Solving Problems with the Spreadsheet Link Software

Model Data Using Regression and Curve Fitting

This example shows how to execute MATLAB data regression and curve fitting in

Microsoft Excel using a worksheet and a VBA macro.

The example organizes and displays the input and output data in a Microsoft Excel

worksheet. Spreadsheet Link functions copy the data to the MATLAB workspace and

execute MATLAB computational and graphic functions. The VBA macro also returns

output data to a worksheet.

Open the ExliSamp.xlIs file and select the Sheetl worksheet. For help finding the

ExBiSamp.xls file, see “Installation” on page 1-3.

Sheetl of the spreadsheet contains the named range DATA, which consists of the

example data set in worksheet cells A4 through C28.

A B c

1 |Regression and Curve Fitting
2

3 DATA

4 35 207 1325
5 17 90 533
6 43 180 1013
7 41 187 1163
8 177 552 5326
9 57 354 2043
10 20 101 602
1 18 91 532
12 17 86 543
13 35 180 1134
14 25 136 766
15 17 84 495
16 23 102 635
17 24 148 13
18 40 292 1591
19 25 126 671
20 17 88 521
21 46 235 1319
22 v 204 1038
23 15 68 458
24 85 363 2904
25 66 300 2006
26 39 161 938
27 111 459 3282
28 16 80 476

2-2

Spreadsheet Link Functions
1. Transfer the data to MATLAB.
#MATLAB' <== MLPutMatrix("data".DATA)

2. Set up data for regression.

#MATLAB' <== MLEvalString("y = data(:.3)")
#MATLAB <== MLEvalString("e = ones(length(data),1)")
#MATLAB' <== MLEvalString("A = [e data(:.1:2)]"}

3. Compute regression coefficients.
#MATLAB' <== MLEvalString("beta = Aly")

4. Calculate regressed result.
#MATLAB' <== MLEvalString("fit = A*beta")

5. Compare original data with regression results.
#MATLAB' === MLEvalString("[v.k] = sort(y)")
#MATLAB' <== MLEvalString(“fit = fit(k)")
#MATLAB' <== MLEvalString("n = size(data,1)")

6. Use MATLAB's polynomial solving functions for another curve fit.

#MATLAB' <== MLEvalString("[p.S] = polyfit{1:n.y".5)")
#WATLAB' <== MLEvalString("newfit = polyval(p,1:n,S)")

7. Plot curves and add legend

#MATLAB' <== MLEvalString("plot(1:n,y.'bo’,1:n fit, v, 1:n,newdit'g’); legend(data’, fit’, newfit’)")

M

Model Data Using Regression and Curve Fitting

Model Data in Worksheet

To perform regression and curve fitting, execute the specified Spreadsheet Link functions
in worksheet cells.

1

Execute the Spreadsheet Link function that copies the sample data set to the
MATLAB workspace by double-clicking the cell E5 and pressing Enter. The data
set contains 25 observations of three variables. There is a strong linear dependence
among the observations. In fact, they are close to being scalar multiples of each
other.

Execute the functions in cells E8, E9, and E10. The Spreadsheet Link functions in
these cells regress the third column of data on the other two columns, and create:
+ A single vector y containing the third-column data

+ A three-column matrix A, which consists of a column of 1s followed by the rest of
the data

Execute the function in cell E13. This function calculates the regression coefficients
by using the MATLAB back slash (\) operation to solve the overdetermined system
of linear equations, A*beta = vy.

Execute the function in cell E16. MATLAB matrix-vector multiplication produces the
regressed result, Fit.

Execute the functions in cells E19, E20, and E21. These functions:

a Compare the original data with Fit.
b Sort the data in increasing order and apply the same permutation to Fit.
¢ Create a scalar for the number of observations.

Execute the functions in cells E24 and E25. Fit a polynomial equation to the data
for a fifth-degree polynomial. The MATLAB polyfit function automates setting
up a system of simultaneous linear equations and solutions for the coefficients. The
polyval function then evaluates the resulting polynomial at each data point to
check the goodness of the fit newfit.

Execute the function in cell E28. The MATLAB plot function graphs the original
data (blue circles), the regressed result Fit (dashed red line), and the polynomial
result (solid green line).

2-3

2 Solving Problems with the Spreadsheet Link Software

o "

ot B

File Edit View Inset Tools Desktop Window Help N

DEES | LANODLRL- 2| 0E D

6000 T T T T

O data
fit il

newfit |

5000

4000 -
3000 [e
2000 | 00 .

1000 0o

0 5 10 15 20 25

Since the data is closely correlated, but not exactly linearly dependent, the Fit curve
(dashed line) shows a close, but not exact, fit. The fifth-degree polynomial curve
newfitis a more accurate mathematical model for the data.

2-4

Model Data Using Regression and Curve Fitting

Model Data Using VBA Macro

To model the data using a VBA macro, execute the Spreadsheet Link functions in a VBA
macro.

1 Inthe ExliSamp.xls file, click the Sheet2 tab. The worksheet for this example
appears.

2-5

2 Solving Problems with the Spreadsheet Link Software

A B C D
Regression and Curve Fitting Macro
(See Module 1)
0 === CurveFit(DATA,"AT""BT","CT")

y fit newfit

Cell A4 calls the macro CurveFit, which you can examine in the Microsoft Visual
Basic environment.

2-6

Model Data Using Regression and Curve Fitting

E Microsoft Visual Basic for Applications - ExliSamp.xls

=N B =

! File Edit View Inset Format Debug Run Tools Add-Ins Window Help Type a question for help v
EE-+d - - Pon @ AW @ Lnz Coll E
Project - ExliSamp x
5 x| A& EiSamp.xs - Modulel (Code) =R (5=
=3 L

| (General)
& Bxdisamp (Bxdisamp.ls)

j | (Declarations)

=

21§ Microsoft Excel Objects
Sheetl (Sheet1)
Sheet? (Sheet?)
Sheet3 (Sheet3)
Sheet4 (Sheet4)
Sheet5 (Sheets)

Function CurwveFit (aData,
'"MATLAR regression and

-

sTargetl, sTarget?, sTarget3)

curve fitting macro

Sheets (Sheets) MLPutMatrix "data"™, aData
@ ThisWorkbook MLEval3tring "v = data(:,3)}"
£-E5§ Modules MLEvalString "n = length(y}"
ﬂ% Module 1 MLEvalString "e = ones(n,1}"
&[0 References MLEvalString "R = [e data(:,1l:2)]"
-8 Spreadsheetlink2007_2010 MLEvalString "beta = A\y"
MILEvalString "fit = A*beta™
N T b MLEvalString "[v,.k] = soxt(y)™
MLEvalString "fit = fic(k)"
Properties - Modulel x| MLEvalString "[p,S] = polyfit(l:n,y',5}"
|Module1 Module B MLEvalString "newfit = polyval(p,l:n,5)'"
MLEvalString "plot(l:n,vy,'bo',l:n,fit,'r:',1:n,newfit, 'qg’'

Alphabetic] Categorized]

m Module 1

MLGetMatrix "y", sTargetl
MLGetMatrix "fit", =sTarget2
MLGetMatrix "newfit™, sTarget3

End Function

While this module is open, ensure that the Spreadsheet Link add-in is enabled. To
enable it, see “Add-In Setup” on page 1-5. After the add-in is enabled, the Project
Explorer lists it under the References folder.

Execute the CurveFit macro by double-clicking the cell A4 and pressing Enter. The
macro runs the Spreadsheet Link functions. When the macro finishes, the input and
output data appears in worksheet cells A7:C31.

* Column A contains the original data y (sorted).

* Column B contains the corresponding regressed data Fit.

* Column C contains the polynomial data newFit.

2 Solving Problems with the Spreadsheet Link Software

2-8

A B C D
Regression and Curve Fitting Macro
(See Module 1)

0 === CurveFit(DATA,"AT""BT","CT")

y fit newfit
1325 | 379.0475] 402.008
533 430.3099 | 515.8528
1013 | 462.4722] 549.7114
10 1163 | 472.0222] 543.0184
11 5326 | 501.7971] 524 5499
12 2043 | 4V6.7973] 513775
13 602 467 2472 522 2081
14 h32 570.8968 | 554761
15 h43 641.1212 | 511.0947
16 1134 | 743.6461| 636.9715
17 766 T67.5211| 7756072
18 495 773.5589] 869.023
19 B35 1143.781] 959.3974
20 913 12795931 1040.415
21 1591 1201.219] 1108.636
22 671 1098.695 | 1164 812
23 521 1251.081] 1215276
24 1319 | 1478.743 | 1273.275
25 1038 | 1163.157 | 1360.322
26 458 1479157 | 1507 557
27| 2904 | 2086177 1757.09
28| 2006 |2011.592]2163.358
29 93a 26662241 2794 475
30 3282 | 3483345 3733586
31 476 5197.796 | 5080215

See Also
MLEvalString | MLGetMatrix | MLPutMatrix | plot | polyfit | polyval

Model Data Using Regression and Curve Fitting

More About

. “Interpolate Thermodynamic Data” on page 2-10

. “Price Stock Options Using Binomial Model” on page 2-15
. “Plot Efficient Frontier of Financial Portfolios” on page 2-19
. “Map Time and Bond Cash Flows” on page 2-23

. “Executing Spreadsheet Link Functions” on page 1-40

2-9

2 Solving Problems with the Spreadsheet Link Software

Interpolate Thermodynamic Data

This example shows how to interpolate data using Spreadsheet Link to invoke MATLAB
functions in Microsoft Excel.

The example uses the two-dimensional data-gridding interpolation function griddata on
thermodynamic data, where volume has been measured for time and temperature values.
The griddata function finds the volume values underlying the two-dimensional time-
temperature function for a new set of time and temperature coordinates.

To organize and display the original data and the interpolated output data, you can use
Microsoft Excel worksheets.

Open the ExIi1Samp.xls file and select the Sheet3 worksheet. For help finding the
ExliSamp.xls file, see “Installation” on page 1-3.

This worksheet contains measured thermodynamic data in cell ranges A5 through A29,

B5 through B29, and C5 through C29. The time and temperature values for interpolation
are in cell ranges E7 through E30 and F6 through T6, respectively.

2-10

Interpolate Thermodynamic Data

A E C E F G H J K L M M] P] 5} S T
Data Interpolation
Original Data Interpolated Yalues
Time Temp Volume

0.025 6800 2504.08 Temp

0.050 6805 2535.07 Time 55.0 555 53.0 63.5 700 70.5 .0 715 Jz0 725 730 735 4.0 T4.5 750

0.075 B8.07 2562.91 0.025)

0100 BB.03 257574 0.05

0125 68.20 Z606.15 0.075)

0150 BB.50 2628.56 0.1

0175 BB.ES 265136 0.125]

0.200 63.22 271206 0.15)

0225 T0.08 2V67.52 0.175]

0250 V033 281554 0.2

0.275 T0.53 25824.37 0.225)

0.300 7085 E2ET3.65 0.25

0.325 TN 2588220 0.275)

0.350 Tldd 2896.43 0.3

0.375 T8z 230207 0.325

0.400 T2.33 2920.04 0.35]

0425 TZBS 232335 0.375

0.450 T3.46 2334.23 0.4

0475 7385 233555 0.425

0500 T4zE 301293 0.45

0.525 T4.37 303312 0.475)

0.550 7455 3130.01 0.5

0575 T4ET 317324 0.525

0.600 T4.72 31807 0.55]

0625 75.00 318415 0.575

0.6

Spreadsheet Link Functions

1. Transfer ariginal data ta MATLAE.
HMATLAE <== MLPuthMatrix["Labels", 44:C4)
HMATLAE <== MLPutMatrinl "% A5 A23]
HMATLAE <== MLPutMatri["T" BS:E23)
HMATLAE <== MLPutMatri("\ C5: C23)

2. Transferinterpalation data points to MATLAE,
HMATLAE <== MLPutMatri["¥a" ET:E30)
HMATLAE <== MLPutMatrin["Ta" FE: TE)

3. Execute MATLAE data interpolation function.
#MATLAE <== MLEvalStingl"[<1, TI. V1] = griddatal,T.M X2, Ta, nearest’]"]

4. Transpose output data matrix and transfer data to Excel.
HMATLAE <== MLEvalSting("l\V = \WI;")
HMATLAE (== MLGetMatria["W","sheet3F 7"

5. Plotinterpolated data and label the figure.
H#MATLAE <== MLEvalStingl("surf(xl, TI, WiktitlelInterpolated Data'’) xlabellL abels{1t); vlabelll abelzi2); zlabelll abel={3t; rid on™)

Execute the Spreadsheet Link function that passes the Time, Temp, and Volume
labels to the MATLAB workspace by double-clicking the cell A33 and pressing
Enter.

Copy the original time data to the MATLAB workspace by executing the function in
the cell A34. To copy the original temperature data, execute the function in the cell
A35. To copy the original volume data, execute the function in cell A36.

Copy the interpolation time values to the MATLAB workspace by executing the
function in cell A39. To copy the interpolation temperature values, execute the
function in cell A40.

Execute the function in cell A43. The griddata function performs two-dimensional
interpolation that generates the interpolated volume data using the inverse distance
method.

2-11

2 Solving Problems with the Spreadsheet Link Software

5 Transpose the interpolated volume data and copy it to the Excel worksheet by

executing the functions in cells A46 and A47. The data fills the cell range F7:T30.

Interpolated Yalues

Temp
Time 58.0 58.5 53.0 53.5 70.0 70.5 71.0 715 720 725 73.0 73.5 7d.0

7.5

5.0

0.025 2504.08 2635815 2707.32 275009 2784.91 285113 25162 234067 236140 235317 300006 3006.32 3041.01
0.05 2507.26 263576 Z2704.73 274666 Z7¥r3.96 254635 Z507.00 233433 2355.07 Z376.63 233564 233335 30354.43
0.075) 2510.83 263345 2702558 274362 277540 2841684 230275 232364 2345086 237051 255750 =332.60 3027.35
0 251393 263134 Z700.70 274093 27727 283766 2838.88 232466 234343 Z364.66 238167 £386.08 302143
0125] 251514 262560 263517 2738.77 ZV67.61 283383 283540 252007 233514 255514 257616 237383 301506
0.15) 251431 2628558 ZE638.02 273633 £7Ed.d3 283038 283231 231587 293523 235397 257093 257386 3008.70
0175] 25184 262555 263725 =2735.66 276200 252731 288553 231206 252872 2594507 256607 =25G68.21 300247
0.2] 250810 2623.91 Z636.87 273473 Z7E0.ZZ 282465 258726 2308.72 232462 234475 256171 236283 2356.33
0.225] 2503.37 263132 2696.85 2734.37 275324 252257 2685.23 230580 232036 234073 255765 =357.93 2330.50
0.25| 2437.84 263233 263728 273442 275310 282105 288368 2303.34 231776 233713 2359537 235336 29584.86
0275 243166 2634.64 263505 273431 2¥53. 76 =2520.23 268243 230133 231502 235397 235071 =2343.20 2373.52
0.3] 2484.92 263635 263313 273585 £7E112 282016 288155 £833.v3 Z31ZVE 293126 2347858 234548 297453
0.325] 247771 263500 270064 273722 =Z763.03 282081 =2585106 283572 =2511.04 232303 254547 234221 2363.96
0.35] 2470.07 263354 270241 273301 Z¥E5.53 Z282Z2M 288097 283813 230382 232723 2343552 233543 Z965.83
0.375] 246206 264033 2704.45 274113 2765.54 252395 =55123 283500 230313 232605 234201 2357106 236239
0.4] 2453.70 264215 Z706.7S 274375 Z771.83 282633 288203 £833.34 2308.97 232533 234036 233542 235355
0425 244503 264315 2705.26 274667 Z775.62 282313 2683.20 283316 230934 232514 254037 233425 2357.45
0.45| 2436.07 264334 27137 274332 Z¥7I.68 263232 £884.78 230044 231023 232548 234024 23535367 235616
0.475| 2426.82 264445 2714.84 275345 Zv54.06 2535.65 2686.785 230213 251163 292634 254057 2353371 2355.74
0.5 241731 264477 PT84 Z2TST.3Z ZVEE.T3 285978 288513 230440 231352 29271 234136 235434 295622
0.525] 240754 2644.80 272095 276144 273367 2544.001 253193 2307.04 231583 232557 234261 233555 2357.60
0.55 233751 Z644.56 272414 ZTES.TI ZVI8.87 284855 283513 EZ3WM Z318.7E 233130 234430 235730 2953.85
0.575) 23587.24 2644.05 2727.33 277037 2804.31 2553.35 2838.77 291360 232133 235466 254643 =2333.57 2362869
0.6 237671 2643.25 273067 277514 280397 285843 230271 291748 232567 233783 234533 234235 296666

3125.78
326,43
3126.97
312733
31277
32795

312811
3128.21
3126.25
312824
3126.15
3128.07
312750
312766
312730
326,73
3126.07
3125.09
3123.85
2246
J21e7
32058
312169
3123.41

302655
3036.65
304632
3055.77
3065.02]
3074.08
3082.933
303157
3033.39
3108.19
311614
3123.83
3131. 26
313838
314519
315166
F157.75
31E3.42
3166.63
317331
317739
3180.74
3183.21
3154.53

6 Execute the function in cell A50. The MATLAB software plots and labels the

interpolated data on a three-dimensional color surface, with the color proportional to

the interpolated volume data.

2-12

Interpolate Thermodynamic Data

4| Figure1 RN (O =5

File Edit View Inset Tools Desktop Window Help N

NEEAS RN DEL- Q0| aD

Interpolated Data

3200 -,

2800

Volume

2600 -

2400 .|
76
0.6

T2

Temp 68 ¢ Time

To generate different volume values, close the figure and change the measured
thermodynamic data in cells A5:C29. Then, execute all the Spreadsheet Link
functions again. The worksheet updates with new volume rates and MATLAB
generates a new figure of the interpolated volume data.

2-13

2 Solving Problems with the Spreadsheet Link Software

2-14

See Also
griddata | MLEvalString | MLGetMatrix | MLPutMatrix | surf

More About

“Model Data Using Regression and Curve Fitting” on page 2-2
“Price Stock Options Using Binomial Model” on page 2-15
“Plot Efficient Frontier of Financial Portfolios” on page 2-19
“Map Time and Bond Cash Flows” on page 2-23

“Executing Spreadsheet Link Functions” on page 1-40

Price Stock Options Using Binomial Model

Price Stock Options Using Binomial Model

This example uses the binomial model to price a stock option. The binomial model
assumes that the probability of each possible price over time follows a binomial
distribution. Price values can become either one up or one down over any short time
period. Plotting these two values over time is known as building a binomial tree. For
details about the binomial model, see “Pricing and Analyzing Equity Derivatives”
(Financial Toolbox).

The example organizes and displays the input and output data in a Microsoft Excel
worksheet. Spreadsheet Link functions copy data to a MATLAB matrix, calculate prices,
and return data to the worksheet.

Open the ExliSamp.xlIs file and select the Sheet4 worksheet. For help finding the
ExBiSamp.xls file, see “Installation” on page 1-3.

This worksheet contains these named ranges:

* B4:B10 named bindata. Two cells in bindata contain formulas:

B7 contains =5/12
+ B8 contains =1/12
* B15 named asset_tree.

* B23 named value_tree.

2-15

2 Solving Problems with the Spreadsheet Link Software

[y . ;
Em O owo ~om bk Wk

-
oy m

[R L R
W R = O W 00~

Mo P2
[R

26

[N]
[==R]

A B C

Binomial Option Pricing
bindata
Asset price, so 3 52.00
Option exercise price, x | $ 50.00
Risk-free interest rate. r 10%
Time to maturity, t (yrs) | 0.416667]=5/12
Time increment, dt 0.083333|=112
Volatility, sig 0.4
Call (1) or put (0), flag 0
Start Period 1

Asset price tree, p ($)

Option value tree, o ($

Spreadsheet Link Functions
1. Transfer data to MATLAB.
#MATLAB' === MLPutMatrix("b", bindata)

2. Execute MATLAB Financial Toolbox binomial option pricing function.
#MATLAB' <== MLEvalString("[p. o]=binprice(b(1). b(2), b(3), b(4). &(5). b(6). b(7))")

3. Transfer output data to Excel.
#MATLAB <== MLGetMatrix("p", "asset_tree")
#MATLAB <== MLGetMatrix("0", "value_tree")

Period 2 Period 3 Period 4 Period 5

Note: This example requires Financial Toolbox™, Statistics and Machine Learning
Toolbox™, and Optimization Toolbox™.

2-16

Execute the Spreadsheet Link function that copies the asset data to the MATLAB
workspace by double-clicking the cell D5 and pressing Enter.

Execute the function that calculates the binomial prices in cell D8.

Copy the price data to the worksheet by executing the functions in cells D11 and D12.

The data in the worksheet updates.

Price Stock Options Using Binomial Model

(= &S T = FURN L Y

w00~

10

0 <== MLEvalString("[p. o]=binprice(b(1). b(2), b(3). b{4), b{5). b{8), b(7))")

A B c D E F G
Binomial Option Pricing
bindata Spreadsheet Link Functions
Asset price, so $ 52.00 1. Transfer data to MATLAB.
Option exercise price, x | $ 50.00 0 === MLPutMatrix("b", bindata}
Risk-free interest rate, r 10%
Time to maturity. t (yrs) | 0.416667]|=52/12 2. Execute MATLAB Financial Toolbox binomial option pricing function.
Time increment, dt 0.083333]=112
WVolatility, sig 04
Call (1) or put (0), flag 0 3. Transfer output data to Excel.
0 === MLGetMatrix({"p", "asset_tree")
0 === MLGetMatrix("o", "value_tree")
Start Period 1 Period 2 Period 3 Period 4 Period &

Asset price tree, p ($) 52.000 58.365 65509 73627 82527 92628

0 46323 52.000 55.365 65.509 73.527

0 0 41277 46329 52.000 58.365

0 0 0 36776 41277 46.329

0 0 0 0 32.765 36.776

0 0 0 0 0 29192
Option value tree, o ($ 3.728 1.664 0.4238 0 0 0

0 5.918 2.964 0.876 0 0

0 0 9.060 5.164 1.793 0

0 0 0 13.224 8.723 3671

0 0 0 0 17.235 13.224

0 0 0 0 0 20808

The asset price tree contains these prices:

* Period 1 — The up and down prices

* Period 2 — The up-up, up-down, and down-down prices

* Period 3 — The up-up-up, up-up, down-down, and down-down-down prices

+ And soon.

The option value tree gives the associated option value for each node in the price

tree. The option value is zero for prices significantly above the exercise price. Ignore
the zeros that correspond to a zero in the price tree.

You can generate different binomial prices by changing the data in the cell range B4:B10
and executing the Spreadsheet Link functions again. If you increase the time to maturity

2-17

2 Solving Problems with the Spreadsheet Link Software

in cell B7 or change the time increment in cell B8, enlarge the output tree areas as
needed.

See Also
binprice | MLEvalString | MLGetMatrix | MLPutMatrix

More About
. “Model Data Using Regression and Curve Fitting” on page 2-2

. “Interpolate Thermodynamic Data” on page 2-10

. “Plot Efficient Frontier of Financial Portfolios” on page 2-19

. “Map Time and Bond Cash Flows” on page 2-23

. “Pricing and Analyzing Equity Derivatives” (Financial Toolbox)

. “Executing Spreadsheet Link Functions” on page 1-40

2-18

Plot Efficient Frontier of Financial Portfolios

Plot Efficient Frontier of Financial Portfolios

This example analyzes three portfolios with given rates of return for six time periods by
executing MATLAB functions using Spreadsheet Link. In actual practice, these functions
can analyze many portfolios over many time periods, limited only by the amount of
computer memory available.

For details about the efficient frontier of financial portfolios, see “Analyzing Portfolios”
(Financial Toolbox). To learn about portfolio optimization theory, see “Portfolio
Optimization Theory” (Financial Toolbox).

The example organizes and displays the input and output data in a Microsoft Excel
worksheet. Spreadsheet Link functions copy data to a MATLAB matrix, perform
calculations using Financial Toolbox functions, and return data to the worksheet.

Open the ExliSamp.xlIs file and select the Sheet5 worksheet. For help finding the
ExliSamp.xlIs file, see “Installation” on page 1-3.

This worksheet contains rates of return for three different portfolios: Global, Corporate
Bond, and Small Cap.

A B C D E F G H | J
1 | Portfolio Efficient Frontier
2 Global Corp.Bnd Small Cap
3 |Rates of return Global Corp. Bnd Small Cap Risk ROR Weights
4 Nov-91] 7.125% 4.125% 8.375%
5 Nov-92| 5.125% 5.125% 3.875%
6 Nov-93] -1.375% 5750% 10.500%
7 Nov-94] 7.750% 6.000% 14.750%
g Nov-95] 8.250% 6.375% -3.625%
9 Nov-96] 12.625% 6.125% 9.125%
10
11
12
13 | Spreadsheet Link Functions
14 |1. Transfer data to MATLAB.
15 |#MATLAB? === MLPutMatrix("Labels", F3:G3)
16 |#MATLAB? === MLPutMatrix("retseries”, B4:09)
17
18 |2. Execute MATLAB Financial Toolbox functions.
19 |#MATLAB? === MLEvalString("[ret, cov] = ewstats(retseries)”)
20 |#MATLAB? === \LEvalString([risk, ror, weights] = portoptiret, cov, 20)7)
21
22 |3. Transfer output data to Excel.
23 #MATLAB? === MLGetMatrix("risk”, "sheet5IF4")
24 #MATLAB? === MLGetMatrix("ror”, "sheetslG4")
25 #MATLAB? === MLGetMatrix("weights", "sheetalH4")
26
27 |4. Plot efficient frontier data and label the figure.
28 [#MATLAB? === WLEval3tring("portoptiret, cov, 20); grid on; xlabel(Labels{1}); ylabel(Labels{2})")

2-19

2 Solving Problems with the Spreadsheet Link Software

2-20

21

]
%]

P2 PRI RI R3 R R
=l e

8

Note: This example requires Financial Toolbox, Statistics and Machine Learning
Toolbox, and Optimization Toolbox.

Execute the Spreadsheet Link function that transfers the plot labels for the x-axis
and y-axis to the MATLAB workspace by double-clicking the cell A15 and pressing
Enter.

Copy the portfolio return data to the MATLAB workspace by executing the function
in the cell A16.

Generate efficient frontier data for 20 points along the frontier by executing the
Financial Toolbox functions in A19 and A20.

Copy the output data to the Excel worksheet by executing the Spreadsheet Link
functions in A23, A24, and A25.

The output data contains the highest rate of return ROR for a given risk. The output
data also contains the weighted investment in each portfolio Weights that achieves
that rate of return.

A B c D E F G H |

Portfolio Efficient Frontier

J

Global Corp. Bnd Small Cap

Rates of return Global Corp. Bnd Small Cap Risk ROR Weights
Nov-91| 7.125% 4.125% 8.375% 0.730%|] 5.643% 0.3% 96.1% 3.5%
Nov-92| 5.125% 5.125% 3.875% 0.760%| 5.723% 4.0% 89.7% 6.3%
MNov-93| -1.375% 5750% 10.500% 0.844%| 5.803% 7.7% 83.3% 9.0%
MNov-94| 7.750% 6.000% 14.750% 0.968%| 5.883% 11.3% 76.9% 11.8%
Nov-95| 8.250% 6.375% -3.625% 1.118%| 5.964% 15.0% 70.5% 14.5%
Nov-96) 12.625% 6.125% 9.125% 1.287%| 6.044% 18.7% 54.0% 17.3%
1.466%| 6.124% 22.3% 57.6% 20.0%
1.653%| 6.204% 26.0% 51.2% 22 8%
1.846%| 6.284% 29.7% 44.8% 25.5%
Spreadsheet Link Functions 2.042%| 6.365% 33.3% 38.4% 28.3%
1. Transfer data to MATLAB. 2.241%| 6.445% 37.0% 32.0% 31.1%
0 === MLPutMatrix("Labels", F3:G3) 2.443%| 6.525% 40.6% 25.6% 33.8%
0 === MLPutMatrix(retseries”, B4:093) 2.646%| 6.605% 44 3% 19.1% 36.6%
2.850%| 6.685% 48.0% 12.7% 39.3%
2. Execute MATLAB Financial Toolbox functions. 3.055%) 6.766% 51.6% 6.3% 42.1%
0 === MLEvalString([ret, cov] = ewstats(retseries)”) 3.262%| 6.846% 55.0% 0.0% 45.0%
0 === MLEval3tring("[risk, ror, weights] = portopt(ret, cov, 20)™) 3.620%| 6.926% 41.3% 0.0% 58.7%
4.213%| 7.006% 27.5% 0.0% 72.5%
3. Transfer output data to Excel. 4.855%| 7.086% 13.8% 0.0% 86.2%
0 === MLGetMatrix("risk”, "sheet5IF47) 5.791%] 7.167% 0.0% 0.0% 100.0%

0 === MLGetMatrix{"ror, "sheets1G47)
0 === MLGetMatrix"weights”, "sheet51H4")

4. Plot efficient frontier data and label the figure.

#MATLAB?

=== MLEvalString("portopt(ret, cov, 20); grid on; xlabel(Labels{1}); ylabel(Labels{2})")

Plot Efficient Frontier of Financial Portfolios

5 Plot the efficient frontier for the same portfolio data by executing the Financial

Toolbox functions in cell A28.

o

4 Efficient Frontier

File Edit

O de

0.072
0.07
0.068
0.066

x
2 0.064

o
0.062
0.06
0.058

0.056

Insert Tools
LE MO E AL

Mean-Variance-Efficient Frontier

Desktop Window Help

0G| =@

[&] eSa)

|

0.02

0.03
Risk

0.04 0.05 0.06

The light blue line shows the efficient frontier. Observe the change in slope above
a 6.8% return because the Corporate Bond portfolio no longer contributes to the

efficient frontier.

2-21

2 Solving Problems with the Spreadsheet Link Software

2-22

To generate different efficient frontier data, close the figure and change the data in cells
B4:D9. Then, execute all the Spreadsheet Link functions again. The worksheet updates
with new frontier data and MATLAB generates a new efficient frontier plot.

See Also

ewstats | MLEvalString | MLGetMatrix | MLPutMatrix | portopt

More About

“Model Data Using Regression and Curve Fitting” on page 2-2
“Interpolate Thermodynamic Data” on page 2-10

“Price Stock Options Using Binomial Model” on page 2-15
“Map Time and Bond Cash Flows” on page 2-23

“Executing Spreadsheet Link Functions” on page 1-40

Map Time and Bond Cash Flows

Map Time and Bond Cash Flows

This example shows how to use Financial Toolbox and Spreadsheet Link to calculate a
set of cash flow amounts and dates for a portfolio of five bonds.

Open the ExliSamp.xlIs file and select the Sheet6 worksheet. For help finding the
ExBiSamp.xls file, see “Installation” on page 1-3.

This worksheet contains the maturity dates and coupon rates for five bonds.

A B C D E F G H | J K L M N
1 |Cash Flow and Time Mapping for a Portfolio of Bonds

2 Cash Flow Dates
3 |Settlement Date 26-Jul-99 Bond1

4 Bond2

5 Bond Data Bond3

6 Bond4

7 Maturity Coupon Rate Bond5

5 |Bond1 15-Nov-99 0.05875

9 |Bond2 15-May-00 0.06375

10 |Bond3 15-Nov-00 0.08500

11 |Bond4 15-May-01 0.08000

12 |Bond5 15-Mov-01 0.15750 Cash Flow Amounts
13

14 Bond1

15 Bond2

16 | Spreadsheet Link Functions Bond3

17 |1. Transfer data to MATLAB. Bond4

18 [#MATLAB" <== MLPutMatrix{"maturity”, Maturity’) Bond5

19 |#MATLAB’ <== MLPutMatrix("cpnrate”,"CpnRate")
20 |BMATLAB «== MLPutMatrix("sd",C3)

22 |2. Execute MATLAB Financial Toolbox Cash flow and Time mapping function.
23 #MATLAB’ <== MLEvalString("md = x2mdate(maturity.0); sdm = x2mdate(sd,0)")
24 |#MATLAB' <== MLEvalString("[cfa, cfd] = cfamounts(cpnrate, sdm, md, 2)")

26 |3. Transform date numbers to cell array of character vectors.

27 |#MATLAEI'<== MLEwalString("i = find(isnan(cfd)); zcfd = cfd; zcfd(i) = 0; scfd=datestr{zcfd,2);")

28 |#MATLAB «== MLEvalstring("ccfd = num2cell{scfd.2); ccfd(i) = {N/AT}; ccfd = reshape(ccfd, size(cfd)):")
29 |#MATLAB’ <== MLEvalString("ccfa = cfa; ccfa(i) = 0; alldates = ccfd(end, :);")

30

31 |4. Transfer output data to Excel.

32 [#MATLAB" <== MLGetMatrix("ccfd", "sheet6li3")

33 [#MATLAB <== MLGetMatrix("alldates", "sheet6li13")

34 |#MATLAB" === MLGetMatrix("ccfa”, "sheetfli14")

35

36 |5. Plot the cash flow diagram.

37 |[#MATLAB’ <== MLEvalString("cfplot(cfd, cfa); dtaxis(x',6,sdm,50);title(Cash Flow Diagram’);xlabel(Cash Flow Dates');ylabel(Bonds’);")

Note: This example requires Financial Toolbox, Statistics and Machine Learning
Toolbox, and Optimization Toolbox.

2-23

2 Solving Problems with the Spreadsheet Link Software

1 Execute the Spreadsheet Link function that transfers the column vector Maturity
to the MATLAB workspace by double-clicking the cell A18 and pressing Enter.

2 Transfer the column vector Coupon Rate to the MATLAB workspace by executing
the function in cell A19.

3 Transfer the settlement date to the MATLAB workspace by executing the function in
cell A20.

4 Calculate cash flow amounts and dates by executing the Financial Toolbox functions
in cells A23 and A24.

5 Transform the dates into a cell array of character vectors by executing the functions

in cells A27 through A29.
6 Transfer the data to the Excel worksheet by executing the functions in cells A32
through A34.

A B C D E F G H J K L M N
1 |Cash Flow and Time Mapping for a Portfolio of Bonds
2 Cash Flow Dates
3 |Settlement Date 26-Jul-99 Bond1 | 7/26/1999 11/15/1999 /A MIA MIA MIA
4 Bond2 | 7/26/1999 11/15/1999 5/15/2000 MIA NIA MIA
5 Bond Data Bond3 | 7/26/1999 11/15/1999 5M15/2000 11/15/2000 MN/A MIA
6 Bond4 | 7/26/1999 11/15/1999 5/15/2000 11/15/2000 5M15/2001 NIA
7 Maturity Coupon Rate Bond5 | 7/26/1999 11/15/1999 5/15/2000 11/15/2000 5/M15/2001 11/15/2001
& |Bond1 15-Nov-99 0.05875
9 |Bond2 15-May-00 0.06375
10 |Bond3 15-Now-00 0.08500
11 |Bond4 15-May-01 0.08000
12 |Bond5 15-Mov-01 0.15750 Cash Flow Amounts
13 7/26/1999 11/15/1999 5/16/2000 11/15/2000 5/M15/2001 11/15/2001
14 Bond1 -1.1495 | 102.9375 0 0 0 0
15 Bond2 -1.2473 3.1875 103.1875 0 0 0
16 | Spreadsheet Link Functions Bond3 -1.6630 4.2500 4.2500 1042500 0 0
17 |1. Transfer data to MATLAB. Bond4 -1.5652 4.0000 4.0000 4.0000 104.0000 0
18 0 <== MLPutMatrix("maturity".'Maturity’) Bond5 -3.0815 7.8750 7.6750 7.8750 7.8750 107.8750
19 0 === MLPutMatrix("cpnrate”,"CpnRate")
20 0 === MLPutMatrix("sd".C3)
21
22 2. Execute MATLAB Financial Toolbox Cash flow and Time mapping function.
23 0 === MLEvalString("md = x2mdate(maturity,0); sdm = x2mdate(sd,0)")
24 0 === MLEvalString("[cfa, cfd] = cfamounts(cpnrate, sdm, md, 2)")
25
26 | 3. Transform date numbers to cell array of character vectors.
27 0 === MLEvalString("i = find{isnan{cfd)); zcfd = cfd; zcfd(i) = 0; scfd=datestrizcfd,2);")
28 0 === MLEvalstring("ccfd = num2cell(scfd,2); ccfd(i) = {N/AY; ccfd = reshape(ccfd, size(cfd)):.”)
29 0 «== MLEvalString("ccfa = cfa; ccfa(i) = 0; alldates = ccfd(end, :);")
30
31 4. Transfer output data to Excel.
32 0 «== MLGetMatrix("ccfd", "sheet6li3")
33 0 === MLGetMatnx("alldates”, "sheet6li13")
34 0 === MLGetMatrix("ccfa", "sheetbli14")
35
36 |5. Plot the cash flow diagram.
37 0 === MLEvalString("cfplot(cfd, cfa); dtaxis(x',6.sdm.50):title(Cash Flow Diagram’);xlabel(Cash Flow Dates'):ylabel(Bonds’);")

2-24

Map Time and Bond Cash Flows

7 Display a plot of cash flows for each bond by executing the function in cell A37.

o "

ot B

File Edit View Inset Tools Desktop Window Help N
dde Kh|RRAROTDENL- 208 O

Cash Flow Diagram

1¢
24
7]
=]
5
o3[
4
&
) S S

07/26 11/15 05/15 11/15 05/15 11/15
Cash Flow Dates

To generate cash flows for a different set of five bonds, close the figure and change the
bond data in cells B8:C12. Then, execute all the Spreadsheet Link functions again. The
worksheet updates with new cash flow dates and amounts and MATLAB generates a new
figure of the cash flows.

2-25

2 Solving Problems with the Spreadsheet Link Software

See Also
cfamounts | cfplot | MLEvalString | MLGetMatrix | MLPutMatrix | x2mdate

More About

. “Model Data Using Regression and Curve Fitting” on page 2-2
. “Interpolate Thermodynamic Data” on page 2-10

. “Price Stock Options Using Binomial Model” on page 2-15

. “Plot Efficient Frontier of Financial Portfolios” on page 2-19

. “Executing Spreadsheet Link Functions” on page 1-40

2-26

Error Messages and Troubleshooting

+ “Worksheet Cell Errors” on page 3-2
+ “Microsoft Excel Errors” on page 3-5
* “Data Errors” on page 3-8

* “License Errors” on page 3-10

+ “Startup Errors” on page 3-11

+ “Audible Error Signals” on page 3-13

3 Error Messages and Troubleshooting

Worksheet Cell Errors

You might see these error messages displayed in a worksheet cell.

The first column contains worksheet cell error messages. The error messages begin with
the number sign (#). Most end with an exclamation point (1) or with a question mark (?).

Worksheet Cell Error Messages

Error Message

Meaning

Solution

3-2

The excllink.xla add-in is not

#COLS>#MAXCOLS! Your MATLAB variable exceeds the | This is a limitation in the Excel
Microsoft Excel limit of #MAXCOLS! |product. Try the computation
columns. with a variable containing fewer

columns.

#COMMAND! The MATLAB software does not Verify the spelling of the MATLAB
recognize the command in an command. Correct typing errors.
MLEvalString function. The
command might be misspelled.

#DIMENSION! You used MLAppendMatrix and Verify the matrix dimensions and
the dimensions of the appended the appended data dimensions,
data do not match the dimensions |and correct the argument.
of the matrix you want to append. |For more information, see the

MLAppendMatrix reference page.

#INVAL 1DNAME! You entered an illegal variable Make sure to use legal MATLAB

name. variable names. MATLAB variable
names must start with a letter
followed by up to 30 letters, digits,
or underscores.

#INVALIDTYPE! You specified an illegal MATLAB |Make sure to use the supported
data type with MLGetVar or MATLAB data types.
MLGetMatrix.

#MATLAB? You used a Spreadsheet Link Start the Spreadsheet Link and
function and no MATLAB software | MATLAB software. See “Start
session is running. and Stop Spreadsheet Link and

MATLAB” on page 1-13.

#NAME? The function name is unrecognized. | Be sure the excllink.xla add-

in is loaded. See “Add-In Setup”
on page 1-5. Check the spelling of

Worksheet Cell Errors

Error Message

Meaning

Solution

loaded, or the function name might
be misspelled.

the function name. Correct typing
errors.

#NONEXIST! You referenced a nonexistent Verify the spelling of the MATLAB
matrix in an MLGetMatrix or matrix. Use the MATLAB whos
MLDeleteMatrix function. The command to display existing
matrix name might be misspelled. |matrices. Correct typing errors.
Also, you receive the #NONEX1ST!
error when you attempt to use
matlabfcn to obtain an output.

#ROWS>HMAXROWS!! Your MATLAB variable exceeds the|This is a limitation in the Excel
Excel limit of #MAXROWS! rows. product. Try the computation with

a variable containing fewer rows.

#SYNTAX? You entered a Spreadsheet Link Verify and correct the function
function with incorrect syntax. syntax.
For example, you did not specify
double quotation marks (*"), or you
specified single quotation marks (')
instead of double quotation marks.

#VALUE! An argument is missing from a Supply the correct number of
function, or a function argument is |function arguments, of the correct
the wrong type. type.

#VALUE! A macro subroutine uses Since the function works
MLGetMatrix followed by correctly, ignore the message.
MatlabRequest, which is correct |Or, in this special case, remove
standard usage. A macro function |(MatlabRequest from the
calls that subroutine, and you subroutine.
execute that function from a
worksheet cell. The function works
correctly, but this message appears
in the cell.

#INVALI1DRANGE! The named range is defined Select a range of data on only

incorrectly, or the named range
spans multiple worksheets.

one worksheet and create an
appropriate name for the range
of data. For instructions about
defining names, see Excel Help.

3-3

3 Error Messages and Troubleshooting

3-4

Note: When you open an Excel worksheet that contains Spreadsheet Link functions, the
Excel software tries to execute the functions from the bottom up and right to left. Excel
might generate cell error messages such as #COMMAND! or #NONEXIST!. This is expected
behavior, so ignore the messages and do the following:

1 Close the MATLAB figure windows.

2 Execute the cell functions again one at a time in the correct order by pressing F2,
and then Enter.

Microsoft Excel Errors

Microsoft Excel Errors

The Excel software can display these error messages.

Error Message

Cause of Error

Solution

Error in formula

You entered a formula
incorrectly. Common errors
include a space between
the function name and the
left parenthesis; or missing,
extra, or mismatched
parentheses.

Note: If you use the
Spreadsheet Link software
with a non-English (United
States) Windows desktop
environment, certain
syntactical elements might
not work. For details, see
“Localization Information”
on page 1-39.

Review the entry and correct
typing errors.

Can"t find project or
library

or

Compile error: Sub or
Function not defined

You executed a macro

and the location of
excllink.xlais incorrect
or not specified.

Click OK. The References
window opens. Remove the
check mark from MISSING:
excllink.xla. Find
excllink.xlain its correct
location, select its check box
in the References window,
and click OK. Or, select
Tools > References to open
the References window.
Select the box named
SpreadsheetLink2007_2010.
Click OK.

Run-time error
"1004": Cells method

You used MLGetMatrix
and the matrix is larger

Click OK. Reset worksheet

calculation mode to

3-5

3 Error Messages and Troubleshooting

3-6

Error Message

Cause of Error

Solution

of Application class
failed

than the space available in
the worksheet. This error
destabilizes the Spreadsheet
Link software session

and changes worksheet
calculation mode to manual.

automatic, and save your
worksheet as needed. Restart
the Excel, Spreadsheet Link,
and MATLAB software
sessions.

MATLAB failed to
check out a license
of Spreadsheet Link
or does not have a
valid installation of
Spreadsheet Link

You entered an invalid
license passcode or did not
install Spreadsheet Link
properly.

Ensure that you entered
the license passcode
properly. Reinstall the
Spreadsheet Link add-on.
(See “Installation” on page
1-3.) If you followed the
installation guidelines, used
a proper passcode, and you
are still unable to start the
Spreadsheet Link software,

contact your MathWorks®
representative.

Datasource: Excel;
prompt for user name
and password

This message appears when
an attempt to connect to
the Excel software from

the Database Toolbox™
software fails.

Ensure that the Excel
worksheet referenced by the
data source exists, then retry
the connection.

Could not load some
objects because they
are not available on
this machine

This message appears when
Excel 2013 is not configured
properly.

From the Windows Control
Panel, remove Microsoft
Office 2010 in the programs
list.

Microsoft Excel Errors

Error Message

Cause of Error

Solution

Microsoft Visual Basic

Run-time error ‘429"

ActiveX component can't create object

End

Help

This error appears when
you start the automation
server from the Excel
interface, and multiple
versions of the MATLAB
software are installed on
your desktop.

To correct this error, perform
the following:

1

2

Shut down all MATLAB
and Excel instances.

Open a command
prompt, and using

cd, change to the bin
\win64 subfolder of the
MATLAB installation
folder.

Type the command:

-\matlab /regserver

When the MATLAB
session starts, close it.
Using /regserver fixes
the registry entries.

Start an Excel session.
The Spreadsheet Link
add-in now loads
properly.

Verify that the
Spreadsheet Link
software 1s working by
entering the following
command from the
Command Window:

a = 3.14159

Enter the following
formula in cell Al of the
open Excel worksheet:

=mlgetmatrix("a","al")

The value 3.14159
appears in cell Al.

3-7

3 Error Messages and Troubleshooting

Data Errors

In this section...

“Matrix Data Errors” on page 3-8
“Errors When Opening Saved Worksheets” on page 3-8

Matrix Data Errors

Data in the MATLAB or Microsoft Excel workspaces may produce the following errors.

Data Errors

Data Error Cause Solution
MATLAB matrix cells Corresponding Excel worksheet Excel worksheet cells must
contain zeros (0). cells are empty. contain only numeric or string
data.
MATLAB matrix is a 1- You used quotation marks Correct the syntax to remove
by-1 zero matrix. around the data-location quotation marks.
argument in MLPutMatrix or
MLAppendMatrix.
MATLAB matrix is empty |You referenced a nonexistent VBA |Correct the macro; you may
an. variable in MLPutVar. have typed the variable name
incorrectly.
VBA matrix is empty. You referenced a nonexistent Correct the macro; you may

MATLAB variable in MLGetVar. |have typed the variable name
incorrectly.

Errors When Opening Saved Worksheets

This section describes errors that you may encounter when opening saved worksheets.

3-8

When you open an Excel worksheet that contains Spreadsheet Link functions, the
Excel software tries to execute the functions from the bottom up and right to left.
Excel may generate cell error messages such as #COMMAND! or #NONEXIST!. This is
expected behavior. Do the following:

1 Ignore the messages.

Data Errors

2
3

Close MATLAB figure windows.

Execute the cell functions again one at a time in the correct order by pressing F2,
and then Enter.

If you save an Excel worksheet containing Spreadsheet Link functions, and then
reopen it in an environment where the excllink.xla add-in is in a different
location, you may see the message: This document contains links: Re-
establish links?

To address this issue, do the following:

AW N —-

Click No.
Select Edit > Links.
In the Links dialog box, click Change Source.

In the Change Links dialog box, select matlabroot\toolbox\exlink
\excllink.xla.

Click OK.

The Excel software executes each function as it changes its link. You may see
MATLAB figure windows and hear error beeps as the links change and functions
execute; ignore them.

In the Links dialog box, click OK.

The worksheet now connects to the Spreadsheet Link add-in.

Or, instead of using the Links menu, you can manually edit the link location in each
affected worksheet cell to show the correct location of excllink.xla.

3-9

3 Error Messages and Troubleshooting

License Errors

If you are running an automation server of MATLAB that does not have a Spreadsheet
Link license associated with it, you will receive an license error message. To correct this
issue, from the MATLAB installation that includes Spreadsheet Link, run the command:

matlab /regserver

3-10

Startup Errors

Startup Errors

In this section...
“MATLAB Automatic Start Error” on page 3-11
“MATLAB Version Errors” on page 3-11

MATLAB Avutomatic Start Error

If you have enabled MLAutoStart and MLUseFul IDesktop, right-clicking a spreadsheet
file in the MATLAB Current Folder browser and choosing Open Outside MATLAB
causes a MATLAB System Error to appear. To open the file successfully, click End Now
in the error window.

To avoid this issue, disable MLUseFul IDesktop.

MATLAB Version Errors

If the MATLAB version is set incorrectly, MATLAB does not start and displays this error:
Unable to start MATLAB. Please register MATLAB Software as a COM
Server. Set the MATLAB version using MLProgramld.

Ensure that the correct MATLAB version appears in the Preferences dialog box before
starting MATLAB. For details, see “Setting Spreadsheet Link Preferences” on page 1-10.

If MATLAB is installed on your computer and setting the MATLAB version does not
work, use the last registered version to start MATLAB. To specify the last registered
version of MATLAB:

1 Shut down all MATLAB and Excel sessions.

2 Open a command prompt window, and using cd, change to the bin\win64 subfolder
of the MATLAB installation folder.

3 Enter the command:

-\matlab /regserver

See Also
MLAutoStart | MLProgramid

3-11

3 Error Messages and Troubleshooting

More About

“Installation” on page 1-3

“Add-In Setup” on page 1-5

“Setting Spreadsheet Link Preferences” on page 1-10

3-12

Audible Error Signals

Audible Error Signals

You may hear audible errors while passing data to the MATLAB workspace using
MLPutMatrix or MLAppendMatr ix. These errors usually indicate that you have
insufficient computer memory to carry out the operation. Close other applications or
clear unnecessary variables from the MATLAB workspace and try again. If the error

signal reoccurs, you probably have insufficient physical memory in your computer for this
operation.

3-13

Functions — Alphabetical List

4 Functions — Alphabetical List

4-2

matlabfcn

Evaluate MATLAB command given Microsoft Excel data

Syntax

= matlabfcn(command, inputs)

Description

= matlabfcn(command, inputs) specifies the MATLAB command for evaluation in
the MATLAB workspace, given the input data inputs. Depending upon the MATLAB
output, matlabfcn returns a single value or string into the calling worksheet cell. If the
result contains more than one value in MATLAB, only the first value in the array returns
in the calling worksheet cell. Use this syntax when working in a worksheet cell.

Examples

Find Maximum Likelihood Estimate

Using std, find the maximum likelihood estimate of the standard deviation of data in
worksheet cells A1 through A10. Assume that the data comes from a normal population.
Specify a weight of one in cell C1. Return the result by entering this text into cell A12.

=matlabfcn('std",A1:A10,C1)

matlabfen

A E C
1 11.3442
2 14.5847
3 4.3529
4 12.1554
3 10.7969
6
7
8
9

=]
L

6.7208

8.916
10.8566
18.946

10| 16.923 E.

11

12 |=matlabfcn|[”5td“,£«i:L'-.LE,Cl}l

Cell A12 displays the maximum likelihood estimate of the standard deviation.

A E C
11.3442 1
14.5847

4.3529
12.1554
10.7369

6.73208

8.916
10.8566

18.946
16.9236

(U« B B YR) IR S W O I

—
[

11
12| 4.197647
13

. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

4-3

4 Functions — Alphabetical List

Input Arguments

command — MATLAB command to evaluate
string

MATLAB command to evaluate, specified as a string. Enclose the string in double quotes.
Or, enter the string in a cell without quotes and enter the corresponding cell reference
without quotes as the input argument.

Example: "'sum™
Example: A1

inputs — MATLAB command input arguments
Excel cell reference

MATLAB command input arguments, specified as an Excel cell reference or a reference
to a range of cells. To specify multiple input arguments for a function, separate the cell
references with commas.

Example: B1:B10
Example: A1:C1,A3

Tip

+ If matlabfcn fails, a standard Spreadsheet Link error displays by default; for
example, #COMMAND. To return MATLAB errors, use MLShowMatlabErrors.

See Also

See Also

matlabsub | MLShowMatlabErrors | std

Topics

“Create Diagonal Matrix Using Worksheet Cells” on page 1-23
“Executing Spreadsheet Link Functions” on page 1-40
“Worksheet Cell Errors” on page 3-2

4-4

matlabfen

“Microsoft Excel Errors” on page 3-5

Introduced before R2006a

4-5

4 Functions — Alphabetical List

4-6

matlabinit

Initialize Spreadsheet Link and start MATLAB

Syntax

matlabinit

Description

matlabinit Initializes the Spreadsheet Link software and starts MATLAB process.

If the Spreadsheet Link software has been initialized and the MATLAB software is
running, subsequent invocations do nothing. Use matlabinit to start Spreadsheet
Link and MATLAB sessions manually when you have set MLAutoStart to no. If you set
MLAutoStart to yes, matlabinit executes automatically.

Tips

+ Torun matlabinit from the Microsoft Excel toolbar, click Tools > Macro. In the
Macro Name/Reference box, enter matlabinit and click Run. Alternatively, you
can include this function in a macro subroutine. You cannot run matlabinit as a
worksheet cell formula or in a macro function.

See Also

See Also
MLAutoStart | MLOpen

Topics

“Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16
“Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
“Create Diagonal Matrix Using Worksheet Cells” on page 1-23

“Create Diagonal Matrix Using VBA Macro” on page 1-26

matlabinit

“Find and Execute MATLAB Function Using MATLAB Function Wizard” on page 1-28
“Executing Spreadsheet Link Functions” on page 1-40

Introduced before R2006a

4-7

4 Functions — Alphabetical List

4-8

matlabsub

Evaluate MATLAB command given Microsoft Excel data and designate output location

Syntax

= matlabsub(command, result, inputs)

Description

= matlabsub(command, result, inputs) specifies the MATLAB command for
evaluation in the MATLAB workspace, given the input data inputs. The function
returns the MATLAB output into the worksheet cell specified by result. Use this syntax
when working in a worksheet cell.

Examples

Return Fourth-Order Magic Square in Worksheet Cell
Enter the number four in cell Al.

Enter this text into cell A2. Specify the function magic as the command. Return the
fourth-order magic square into the range of cells starting in cell A4. Reference cell Al as
the input argument for the magic function.

=matlabsub("'magic',"A4" ,Al)

A E C
1 a4l
2 |qﬂaﬂab5ubFWﬂagm“ﬂA4ﬂ;;H

The fourth-order magic square displays in the range of cells from A4 through D7.

matlabsub

A E C D

1 4

2 0

3 :I

4 16 2 3 13
3 5 11 10 8
6 9 7 6 12
7 4 14 15 1

Return Fourth-Order Magic Square in Target Worksheet Cell

Enter the number four in cell Al. Enter a target cell reference to cell A6 in cell A2.
Enter this text into cell A4. Specify the function magic as the command. Return the
fourth-order magic square into the range of cells starting in cell A6 by entering the cell

reference A2. Reference cell Al as the input argument for the magic function.

=matlabsub("'magic',A2,Al)

(AN I
=
(=1}

4 |:matlabﬁLib{"magic",gj,éiﬂ

The fourth-order magic square displays in the range of cells from A6 through D9.

4-9

4 Functions — Alphabetical List

4-10

A B C D

1 a

2 AG

4 0

5 :I

6 16 2 3 13
7 5 11 10 8
8 g 7 6 12
9 a 14 15 1

. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

Input Arguments

command — MATLAB command to evaluate
string

MATLAB command to evaluate, specified as a string. Enclose the string in double quotes.
Or, enter the string in a cell without quotes and enter the corresponding cell reference
without quotes as the input argument.

Example: "*sum™
Example: Al
result — MATLAB result

Excel cell reference

MATLAB result, specified as an Excel cell reference or range name that designates the
location where to display the result of the MATLAB command. To return the result in
a specific cell, specify the cell reference enclosed in quotes. To denote a worksheet cell
address or range name that contains a cell reference to another cell, specify the cell
reference without quotes.

Example: ""A3""
Example: D6

matlabsub

inputs — MATLAB command input arguments
Excel cell reference

MATLAB command input arguments, specified as an Excel cell reference or a reference
to a range of cells. To specify multiple input arguments for a function, separate the cell
references with commas.

Example: B1:B10
Example: A1:C1,A3

Tips
* To return an array of data to the Microsoft Excel Visual Basic for Applications (VBA)
workspace, see MLEvalString and MLGetVar.

* result must not include the cell that contains matlabsub. Do not overwrite the
function itself.

+ Ensure that there is enough room in the worksheet for writing matrix contents. If
there is insufficient room, the function generates a fatal error.

+ If matlabsub fails, a standard Spreadsheet Link error displays by default; for
example, #COMMAND. To return MATLAB errors, use MLShowMatlabErrors.

See Also

See Also

magic | matlabfcn | MLShowMatlabErrors

Topics

“Create Diagonal Matrix Using Worksheet Cells” on page 1-23
“Executing Spreadsheet Link Functions” on page 1-40
“Worksheet Cell Errors” on page 3-2

“Microsoft Excel Errors” on page 3-5

Introduced before R2006a

4-11

4 Functions — Alphabetical List

MLAppendMatrix

Create or append MATLAB matrix with data from Microsoft Excel worksheet

Syntax

= MLAppendMatrix(var_name,mdat)
MLAppendMatrix var_name,mdat
out = MLAppendMatrix(var_name,mdat)

Description

= MLAppendMatrix(var_name,mdat) appends data in mdat to MATLAB matrix
var_name or creates var_name if it does not exist. Use this syntax when working directly
in a worksheet.

MLAppendMatrix var_name,mdat appends data in mdat to MATLAB matrix
var_name or creates var_name if it does not exist. Use this syntax in a VBA macro.

out = MLAppendMatrix(var_name,mdat) lets you catch errors when executing
MLAppendMatrix in a VBA macro. If MLAppendMatrix fails, then out is a string
containing error code. Otherwise, out is O.

Input Arguments
var_name
Name of MATLAB matrix to which to append data.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name. Do not
use the MATLAB variable ans as var_name.

mdat

Location of data to append to var_name.

4-12

MLAppendMatrix

mdat must be a worksheet cell address or range name. Do not enclose it in quotes.

mdat must contain either numeric data or string data. Data types cannot be combined
within the range specified in mdat. Empty mdat cells become MATLAB matrix elements
containing zero if the data is numeric, and empty character vectors if the data is a string.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Append Data from a Worksheet Cell Range to a MATLAB Matrix

In this example, B is a 2-by-2 MATLAB matrix. Append the data in worksheet cell range
Al:A2 to B:

MLAppendMatrix("'B", Al:A2)

Al
A2

B is now a 2-by-3 matrix with the data from A1:A2 in the third column.
Append Data from a Named Worksheet Cell Range to a MATLAB Matrix

B is a 2-by-2 MATLAB matrix. Cell C1 contains the label B, and new_data is the name of
the cell range A1:B2. Append the data in cell range A1:B2 to B:

MLAppendMatrix(Cl, new_data)

Al B1
A2 B2

4-13

4 Functions — Alphabetical List

4-14

B is now a 4-by-2 matrix with the data from A1:B2 in the last two rows.

Tips

* MLAppendMatrix checks the dimensions of var_name and mdat to determine how
to append mdat to var_name. If the dimensions allow appending mdat as either new
rows or new columns, it appends mdat to var_name as new rows. If the dimensions do
not match, the function returns an error.

+ If mdat is not initially an Excel Range data type and you call the function from a
worksheet, MLAppendMatr i x performs the necessary type coercion.

+ If mdat is not an Excel Range data type and you call the function from within a
Microsoft Visual Basic macro, the call fails. The error message ByRef Argument
Type Mismatch appears.

See Also

See Also
MLPutMatrix

Introduced before R2006a

MLAutoStart

MLAutoStart

Automatically start MATLAB

Syntax

= MLAutoStart(flag)
MLAutoStart flag
out = MLAutoStart(flag)

Description

= MLAutoStart(flag) sets automatic startup of the Spreadsheet Link and MATLAB
software. A change of state takes effect the next time an Excel session starts. Use this
syntax when working directly in a worksheet.

MLAutoStart flag sets automatic startup of the Spreadsheet Link and MATLAB
software. A change of state takes effect the next time an Excel session starts. Use this
syntax in a VBA macro.

out = MLAutoStart(flag) lets you catch errors when executing MLAutoStartin a

VBA macro. If MLAutoStart fails, then out is a string containing error code. Otherwise,
outis 0.

Input Arguments

flag

Either "'yes" or "'no"".

Specify ""'yes' to automatically start the Spreadsheet Link and MATLAB software every
time a Microsoft Excel session starts. Specify "'no" to cancel automatic startup of the

Spreadsheet Link and MATLAB software.

Default: ""'yes"

4-15

4 Functions — Alphabetical List

4-16

Output Arguments
out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Cancel Automatic Startup of Spreadsheet Link and MATLAB

Enter this command in a worksheet:

MLAutoStart(''no™)

Spreadsheet Link and MATLAB do not start on subsequent Excel session invocations.

Tips

If Spreadsheet Link and MATLAB are running, then MLAutoStart(''no"") does not
stop them.

See Also

See Also
matlabinit | MLClose | MLOpen

Topics
“Start Spreadsheet Link and MATLAB Automatically” on page 1-13

Introduced before R2006a

MLProgramlid

MLProgramid

Specify MATLAB version

Syntax

= MLProgramld(version)
MLProgramld version

Description

= MLProgramld(version) specifies the MATLAB version to open when Spreadsheet
Link starts in Microsoft Excel. Enter this syntax when working in a worksheet cell.

MLProgramld version specifies the MATLAB version. Enter this syntax when working
in a VBA macro.

Examples

Specify MATLAB Version in Worksheet Cells

To open MATLAB (R2016a) in Microsoft Excel, enter this text in any worksheet cell:
=MLProgramld(*'9.0")

The worksheet cell displays O when MLProgramld runs.

To check that the preference is set, open the Preferences dialog box. The MATLAB
program id box contains 9.0. For details about the Preferences dialog box, see “Setting
Spreadsheet Link Preferences” on page 1-10.

Start MATLAB.
For troubleshooting, see “Startup Errors” on page 3-11.
Specify MATLAB Version in VBA Macro

To open MATLAB (R2016a) in Microsoft Excel, enter this text at the beginning of the
VBA macro:

4-17

4 Functions — Alphabetical List

4-18

MLProgramld "9.0"

Run the macro by clicking Run Macro (F5). For details about running macros, see Excel
Help.

To check that the preference is set, open the Preferences dialog box. The MATLAB
program id box contains 9.0. For details about the Preferences dialog box, see “Setting
Spreadsheet Link Preferences” on page 1-10.

Start MATLAB.

For troubleshooting, see “Startup Errors” on page 3-11.

Input Arguments

version — MATLAB version
string

MATLAB version, specified as a string to indicate which MATLAB version to open when
multiple versions are installed on the computer.

The Windows registry defines the MATLAB version number under . . . \Mathworks
\MATLAB. For example, MATLAB R2016a corresponds to version 9.0 in the registry.

Example: "'9.0"

See Also

See Also
MLAutoStart | MLOpen

Topics
“Setting Spreadsheet Link Preferences” on page 1-10
“Startup Errors” on page 3-11

Introduced in R2016b

MLClose

MLClose

Stop MATLAB

Syntax
= MLClose()

MLClose
out = MLClose()

Description

= MLClose() ends the MATLAB process, deletes all variables from the MATLAB
workspace, and tells the Microsoft Excel software that the MATLAB software is no longer
running. Use this syntax when working directly in a worksheet.

MLClose ends the MATLAB process, deletes all variables from the MATLAB workspace,
and tells the Microsoft Excel software that the MATLAB software is no longer running.
Use this syntax in a VBA macro.

out = MLClose() lets you catch errors when executing MLClose in a VBA macro. If
MLCIlose fails, then out is a string containing error code. Otherwise, out is O.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

End the MATLAB Session

End the MATLAB session from a worksheet:

4-19

4 Functions — Alphabetical List

MLClose()

Tips

If you use MLClose when no MATLAB process is running, nothing happens.

See Also

See Also
MLAutoStart | MLOpen

Topics
“Stop Spreadsheet Link and MATLAB” on page 1-15

Introduced before R2006a

4-20

MLDeleteMatrix

MLDeleteMatrix

Delete MATLAB matrix

Syntax

= MLDeleteMatrix(var_name)
MLDeleteMatrix var_name
out = MLDeleteMatrix(var_name)

Description

= MLDeleteMatrix(var_name) deletes the named matrix from the MATLAB
workspace. Use this syntax when working directly in a worksheet.

MLDeleteMatrix var_name deletes the named matrix from the MATLAB workspace.
Use this syntax in a VBA macro.

out = MLDeleteMatrix(var_name) lets you catch errors when executing
MLDeleteMatrix in a VBA macro. If MLDeleteMatrix fails, then out is a string
containing error code. Otherwise, out is O.

Input Arguments

var_name
Name of MATLAB matrix to delete.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

4-21

4 Functions — Alphabetical List

4-22

Examples

Delete a Matrix from the MATLAB Workspace
Delete matrix A from the MATLAB workspace:

MLDeleteMatrix(""'A™)

See Also

See Also
MLAppendMatrix | MLGetMatrix | MLPutMatrix

Introduced before R2006a

MLEvalString

MLEvalString

Evaluate MATLAB command in MATLAB

Syntax
= MLEvalString(command)

MLEvalString command
err = MLEvalString(command)

Description

= MLEvalString(command) specifies the MATLAB command for evaluation in the
MATLAB workspace. Use this syntax when working in a worksheet cell.

MLEvalString command works in a VBA macro.

err = MLEvalString(command) returns the execution status when executing
MLEvalString in a VBA macro.

Examples

Create Diagonal Matrix in Worksheet Cells

Enter the variable a into cell A1l. Enter the numbers 1 through 5 into the range of cells
from B1 through F1.

Assign the range of cells to variable a in MATLAB using MLPutMatrix. Enter this text
in cell A3.

=MLPutMatrix(Al1,B1:F1)

A E

™1
2
m
=

1]
2

al
| |
3 |:MLPutMatrix|{;;,51 F1)|

[
f2
L
F=s

Iﬂl

4-23

4 Functions — Alphabetical List

Use diag to create a matrix b, containing a diagonal using the five numbers in variable
a. Enter this text in cell A5.

=MLEvalString("'b = diag(a);')

A E C D E F

0

5 |:MLEvaIString|{“b = diag{a}”}|

Retrieve matrix b from MATLAB into Excel, cell A9. Enter this text in cell A7.

O N N B

=MLGetMatrix('b","A9")

The matrix with the diagonal appears in cells A9 through E13.

A B C D E F
1 a 1 2 3 4 5
2
3 0
4
5 0
6
7 0
E :I
9 1 0 0 0 0
10 0 2 0 0 0
11 0 0 3 0 0
12 0 0 0 4 0
13 0 0 0 0 5

Create Diagonal Matrix in VBA Macro

Enter the variable a into cell A1l. Enter the numbers 1 through 5 into the range of cells
from B1 through F1.

4-24

MLEvalString

Click the Developer tab in Microsoft Excel, and then click Visual Basic. The Visual
Basic Editor window opens.

Insert a new module and enter this VBA code into the Code section of the window. This
sample code assumes a macro named Diagonal. For details on working with modules,
see Excel Help.

Sub Diagonal ()
MLPutMatrix "a', Range('B1:F1'")
MLEvalString "b = diag(a);"

MLGetMatrix "b", "A3"
MatlabRequest

End Sub

Run the macro by clicking Run Sub/UserForm (F5). The diagonal matrix appears in
cells A3 through E7. For details on running macros, see Excel Help.

A E C D E F

1 |a 1 2 3 4 3
2

3 1 0 0 0 0

4 0 2 0 0 0

3 0 0 3 0 0

6 0 0 0 4 0

7 0 0 0 0 3

Return Error for Invalid Command

Enter the variable a into cell Al. Enter the numbers 1 through 5 into the range of cells
from B1 through F1.

Click the Developer tab in Microsoft Excel, and then click Visual Basic. The Visual
Basic Editor window opens.

Insert a new module and enter this invalid VBA code into the Code section of the

window. This sample code assumes a macro named Diagonal. For details on working
with modules, see Excel Help.

4-25

4 Functions — Alphabetical List

Sub Diagonal ()
Dim err As Variant

MLPutMatrix "a'", Range(''B1:F1')
err = MLEvalString(""b = diag(2a);") "Invalid code

IT err <> 0 Then
MsgBox err
End IFf

MLGetMatrix "b", "A3"
MatlabRequest

End Sub

Run the macro by clicking Run Sub/UserForm (F5). For details on running macros, see
Excel Help.

This Spreadsheet Link error displays: #COMMAND!. To display MATLAB errors, see
MLShowMatlabErrors.

. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

. “Model Data Using Regression and Curve Fitting” on page 2-2

. “Interpolate Thermodynamic Data” on page 2-10

. “Price Stock Options Using Binomial Model” on page 2-15

Input Arguments

command — MATLAB command to evaluate
string

MATLAB command to evaluate, specified as a string. Enclose the string in double quotes.
Or, enter the string in a cell without quotes and enter the corresponding cell reference
without quotes as the input argument.

Example: "'sum"

Example: A1

4-26

MLEvalString

Output Arguments

err — Execution status
string | number

Execution status, returned as a string or number. If MLEval String fails, then err is
a string containing an error code or error message. Otherwise, the command executes
successfully and err is O.

By default when MLEvalString fails, err contains a standard Spreadsheet Link error,
such as #COMMAND. To return MATLAB errors, execute MLShowMatlabErrors.

Tip
* The specified action alters only the MATLAB workspace and has no effect on the
Microsoft Excel workspace.

See Also

See Also
diag | MLGetMatrix | MLPutMatrix | MLShowMatlabErrors

Topics

“Create Diagonal Matrix Using Worksheet Cells” on page 1-23
“Create Diagonal Matrix Using VBA Macro” on page 1-26
“Model Data Using Regression and Curve Fitting” on page 2-2
“Interpolate Thermodynamic Data” on page 2-10

“Price Stock Options Using Binomial Model” on page 2-15
“Executing Spreadsheet Link Functions” on page 1-40
“Worksheet Cell Errors” on page 3-2

“Microsoft Excel Errors” on page 3-5

Introduced before R2006a

4-27

4 Functions — Alphabetical List

4-28

MLGetFigure

Import current MATLAB figure into Microsoft Excel worksheet

Syntax

= MLGetFigure(width,height)
MLGetFigure width, height
out = MLGetFigure(width,height)

Description

= MLGetFigure(width,height) import the current MATLAB figure into an Excel
worksheet, where the top-left corner of the figure is the current worksheet cell. Use this
syntax when working directly in a worksheet.

MLGetFigure width, height import the current MATLAB figure into an Excel
worksheet, where the top-left corner of the figure is the current worksheet cell. Use this
syntax in a VBA macro.

out = MLGetFigure(width,height) lets you catch errors when executing

MLGetFigure in a VBA macro. If MLGetFigure fails, then out is a string containing
error code. Otherwise, out is O.

Input Arguments
width

Width (in normalized units) of the MATLAB figure when imported into an Excel
worksheet.

height

Height (in normalized units) of the MATLAB figure when imported into an Excel
worksheet.

MLGetFigure

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Import a MATLAB Figure into an Excel Worksheet

Import the current MATLAB figure into an Excel worksheet. Specify the width and the
height of the figure to be half those of the original figure:

MLGetFigure(.5, .5)

Note that if you use Microsoft Excel 2007 or 2010, the width and the height of the
imported figure will be a quarter of those of the original figure.

Tips

+ If you use Microsoft Excel 2007 or 2010, MLGetFigure scales the imported figure by
the product of width and height along both dimensions.

+ If worksheet calculation mode is automatic, MLGetFigure executes when you
enter the formula in a cell. If worksheet calculation mode is manual, enter the
MLGetFigure function in a cell, then press F9 to execute it. Remember that pressing
F9 in this situation can also execute other worksheet functions again and generate
unpredictable results.

+ If you use MLGetFigure in a macro subroutine, enter MatlabRequest on the line
after the MLGetFigure. MatlabRequest initializes internal Spreadsheet Link
variables and enables MLGetFigure to function in a subroutine. Do not include
MatlabRequest in a macro function unless the function is called from a subroutine.

See Also

See Also
MLGetMatrix | MLGetVar

4-29

4 Functions — Alphabetical List

Introduced in R2006b

4-30

MLGetMatrix

MLGetMatrix

Write contents of MATLAB matrix to Microsoft Excel worksheet

Syntax

= MLGetMatrix(var_name,edat)
MLGetMatrix var_name, edat
out = MLGetMatrix(var_name,edat)

Description

= MLGetMatrix(var_name,edat) writes the contents of MATLAB matrix var_name
in the Excel worksheet, beginning in the upper-left cell specified by edat. Use this syntax
when working directly in a worksheet.

MLGetMatrix var_name, edat writes the contents of MATLAB matrix var_name in

the Excel worksheet, beginning in the upper-left cell specified by edat. Use this syntax in
a VBA macro.

out = MLGetMatrix(var_name,edat) lets you catch errors when executing
MLGetMatrix in a VBA macro. If MLGetMatrix fails, then out is a string containing
error code. Otherwise, out is 0.

Input Arguments
var_name
Name of MATLAB matrix to access.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name. Do not
use the MATLAB variable ans as var_name.

edat

Worksheet location where the function writes the contents of var_name.

4-31

4 Functions — Alphabetical List

4-32

edat in quotes directly specifies the location. edat without quotes specifies a worksheet
cell address (or range name) that contains a reference to the location. In both cases, edat
must be a cell address or a range name.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Specify the Matrix Name and Location Directly

Write the contents of the MATLAB matrix bonds starting in cell C10 of Sheet2. If
bonds is a 4-by-3 matrix, fill cells C10. .E13 with data:

MLGetMatrix(*'bonds", "'Sheet2!1C10™)
Specify the Matrix Name and Location Indirectly

Access the MATLAB matrix named by the string in worksheet cell B12. Write the
contents of the matrix to the worksheet starting at the location named by the string in
worksheet cell B13:

MLGetMatrix(B12, B13)
Use MLGetMatrix in a VBA Macro

Write the contents of MATLAB matrix A to the worksheet, starting at the cell named by
RangeA:

Sub Get_RangeAQ)
MLGetMatrix A", "RangeA"
MatlabRequest

End Sub

Use the Address Property of the Range Object to Specify Location

In a macro, use the Address property of the range object returned by the VBA Cells
function to specify where to write the data:

MLGetMatrix

Sub Get Variable()

MLGetMatrix "X, Cells(3, 2).Address
MatlabRequest

End Sub

Catch Errors in a VBA Macro

Use this function to get the variable A from MATLAB and to test if the command
succeeded:

Sub myfun()

Dim out As Variant
out = MLGetMatrix(A™, "Al™)

IT out <> 0 Then
MsgBox out

End ITf

MatlabRequest

End Sub

If MLGetMatrix fails, myfun displays a message box with the error code.

“Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16
“Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
“Create Diagonal Matrix Using Worksheet Cells” on page 1-23

“Create Diagonal Matrix Using VBA Macro” on page 1-26

“Find and Execute MATLAB Function Using MATLAB Function Wizard” on page
1-28

Tips

If data exists in the specified worksheet cells, it is overwritten.

If the dimensions of the MATLAB matrix are larger than that of the specified cells,
the data overflows into additional rows and columns.

edat must not include the cell that contains the MLGetMatrix function. In other
words, be careful not to overwrite the function itself. Also make sure there is enough
room in the worksheet to write the matrix contents. If there is insufficient room, the
function generates a fatal error.

4-33

4 Functions — Alphabetical List

4-34

MLGetMatrix function does not automatically adjust cell addresses. If edat is an
explicit cell address, edit it to correct the address when you do either of the following:

+ Insert or delete rows or columns.
Move or copy the function to another cell.

If worksheet calculation mode is automatic, MLGetMatrix executes when you
enter the formula in a cell. If worksheet calculation mode is manual, enter the
MLGetMatrix function in a cell, and then press F9 to execute it. However, pressing
F9 in this situation may also execute other worksheet functions again and generate
unpredictable results.

If you use MLGetMatrix in a macro subroutine, enter MatlabRequest on the line
after the MLGetMatrix. MatlabRequest initializes internal Spreadsheet Link
variables and enables MLGetMatrix to function in a subroutine. Do not include
MatlabRequest in a macro function unless the function is called from a subroutine.

See Also

See Also
MLAppendMatrix | MLPutMatrix | MLPutRanges

Topics

“Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

“Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19

“Create Diagonal Matrix Using Worksheet Cells” on page 1-23

“Create Diagonal Matrix Using VBA Macro” on page 1-26

“Find and Execute MATLAB Function Using MATLAB Function Wizard” on page 1-28
“Executing Spreadsheet Link Functions” on page 1-40

Introduced before R2006a

MLGetVar

MLGetVar

Write contents of MATLAB matrix in Microsoft Excel VBA variable

Syntax

MLGetVar ML_var_name, VBA_ var_name

Description

MLGetVar ML_var_name, VBA_var_name writes the contents of MATLAB matrix
ML_var_name in the Excel Visual Basic for Applications (VBA) variable VBA_var_name.
Creates VBA_var_name if it does not exist. Replaces existing data in VBA_var_name.

Input Arguments
ML_var_name
Name of MATLAB matrix to access.

ML_var_name in quotes directly specifies the matrix name. ML_var_name without
quotes specifies a VBA variable that contains the matrix name as a string. Do not use
the MATLAB variable ans as ML_var_name. If defined, ML_var_name must be of type
VARIANT. Any other type will give a ""TYPE MISMATCH" error.

VBA_var_name
Name of VBA variable where the function writes the contents of ML_var_name.

Use VBA var_name without quotes.

Examples

Write the Contents of a MATLAB Matrix into a VBA Variable

Write the contents of the MATLAB matrix J into the VBA variable DataJ:

4-35

4 Functions — Alphabetical List

Sub Fetch()
MLGetVar ''J', DataJd
End Sub

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

See Also

See Also
MLPutVar

Topics
“Create Diagonal Matrix Using VBA Macro” on page 1-26
“Executing Spreadsheet Link Functions” on page 1-40

Introduced before R2006a

4-36

MLMissingDataAsNaN

MLMissingDataAsNaN

Set empty cells to NaN or O

Syntax

= MLMissingDataAsNaN(flag)
MLMissingDataAsNaN flag
out = MLMissingDataAsNaN(flag)

Description

= MLMissingDataAsNaN(flag) sets empty cells to NaN or 0. When the Spreadsheet
Link software is installed, the default is "'no"’, so empty cells are handled as Os. If you
change the value of MLMissingDataAsNaN to "yes", the change remains in effect the
next time a Microsoft Excel session starts. Use this syntax when working directly in a
worksheet.

MLMissingDataAsNaN flag sets empty cells to NaN or 0. Use this syntax in a VBA
macro.

out = MLMissingDataAsNaN(Flag) lets you catch errors when executing

MLMissingDataAsNaN in a VBA macro. If MLMissingDataAsNaN fails, then outis a
string containing error code. Otherwise, out is O.

Input Arguments

flag

Either ""yes" or "'no"".

Specify ""'yes' to set empty cells to use NaNs. Specify "'no’" to set empty cells to use Os.

Default: "'no™

4-37

4 Functions — Alphabetical List

Output Arguments
out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Set Empty Cells to Use Os

Cancel the use of the value NaN for empty cells:

=MLMissingDataAsNaN(*'no™)

Tips
A string in an Excel range always forces cell array output and empty cells as NaNs.
See Also

See Also
MLPutMatrix

Introduced in R2007a

4-38

MLOpen

MLOpen

Start MATLAB

Syntax
= MLOpen(Q)

MLOpen
out = MLOpen()

Description
= MLOpen() starts MATLAB process. Use MLOpen to restart the MATLAB session after

you have stopped it with MLClose in a given Microsoft Excel session. Use this syntax
when working directly in a worksheet.

MLOpen starts MATLAB process. Use MLOpen to restart the MATLAB session after you
have stopped it with MLClose in a given Microsoft Excel session. Use this syntax in a
VBA macro.

out = MLOpen() lets you catch errors when executing MLOpen in a VBA macro. If
MLOpen fails, then out is a string containing error code. Otherwise, out is O.

Output Arguments
out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Start a MATLAB Session

Start a MATLAB session from a worksheet:

4-39

4 Functions — Alphabetical List

MLOpen()

Tips
If a MATLAB process has already started, subsequent calls to MLOpen do nothing.

To start a MATLAB session and initialize the Spreadsheet Link software, use
matlabinit rather than MLOpen.

See Also

See Also

matlabinit | MLClose

Introduced before R2006a

4-40

MLPutMatrix

MLPutMatrix

Create or overwrite MATLAB matrix with data from Microsoft Excel worksheet

Syntax

= MLPutMatrix(var_name, mdat)
MLPutMatrix var_name, mdat
out = MLPutMatrix(var_name,mdat)

Description
= MLPutMatrix(var_name, mdat) creates or overwrites matrix var_name in
MATLAB workspace with specified data in mdat. Creates var_name if it does not exist.

Use this syntax when working directly in a worksheet.

MLPutMatrix var_name, mdat creates or overwrites matrix var_name in MATLAB
workspace with specified data in mdat. Use this syntax in a VBA macro.

out = MLPutMatrix(var_name,mdat) lets you catch errors when executing

MLPutMatrix in a VBA macro. If MLPutMatrix fails, then out is a string containing
error code. Otherwise, out is O.

Input Arguments

var_name
Name of MATLAB matrix to create or overwrite.

var_name in quotes directly specifies the matrix name. var_name without quotes
specifies a worksheet cell address (or range name) that contains the matrix name.

mdat

Location of data to copy into var_name.

4-41

4 Functions — Alphabetical List

4-42

mdat must be a worksheet cell address or range name. Do not enclose it in quotes.

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Create or Overwrite a Matrix in the MATLAB Workspace

Create or overwrite matrix A in the MATLAB workspace with the data in the worksheet
range A1:C3:

MLPutMatrix A", Range("'Al1:C3')

Import Data from a Microsoft Excel Worksheet to the MATLAB Workspace Using the putmatrix
Toolbar Button

1 In the Excel worksheet, select the columns and/or rows you want to export to the
MATLAB workspace.

® - s

Home Insert Page Layout Formulas Data

startmatlab |putmatrix getmatrix evalstring getfigure wizard preferences

Custom Toolbars

3 1 2 3
4 4 3 5]

|]
5

2 Click the putmatrix button on the Spreadsheet Link toolbar. A window appears
that prompts you to specify the name of the MATLAB variable in which you want to
store your data.

MLPutMatrix

-

Microsoft Excel

[l
Variable name in MATLAB

Cancel

3 Enter newmatrix for the MATLAB variable name.
4 Click OK.

Now you can manipulate newmatrix in the Command Window.

newmatrix
newmatrix =
1 2 3
4 5 6

. “Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

. “Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19
. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

. “Find and Execute MATLAB Function Using MATLAB Function Wizard” on page
1-28

Tips
+ If var_name exists, this function replaces the contents with mdat.

* Empty numeric data cells within the range of mdat become numeric zeros within the
MATLAB matrix identified by var_name.

+ If any element of mdat contains string data, mdat is exported as a MATLAB cell

array. Empty string elements within the range of mdat become NaNs within the
MATLAB cell array.

4-43

4 Functions — Alphabetical List

4-44

* When using MLPutMatrix in a subroutine, indicate the source of the worksheet data
using the Microsoft Excel macro Range. For example:

Sub test()
MLPutMatrix "a', Range(*'Al:A3")
End Sub

If you have a named range in your worksheet, you can specify the name instead of the
range; for example:

Sub test()
MLPutMatrix "a'", Range('temp')
End Sub

where temp is a named range in your worksheet.

See Also

See Also
MLAppendMatrix | MLGetMatrix | MLPutRanges

Topics

“Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

“Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19

“Create Diagonal Matrix Using Worksheet Cells” on page 1-23

“Create Diagonal Matrix Using VBA Macro” on page 1-26

“Find and Execute MATLAB Function Using MATLAB Function Wizard” on page 1-28
“Executing Spreadsheet Link Functions” on page 1-40

Introduced before R2006a

MLPutRanges

MLPutRanges

Send data in Microsoft Excel named ranges to MATLAB

Syntax
= MLPutRanges()

MLPutRanges
out = MLPutRanges()

Description

= MLPutRanges() writes the named cell ranges in a Microsoft Excel worksheet into
MATLAB variables. The variables are named with the same name specified by the cell
range name in Microsoft Excel. To use this syntax, right-click in any Microsoft Excel cell,
enter this syntax, and press Enter.

MLPutRanges writes the named cell ranges in a Microsoft Excel worksheet into
MATLAB variables. The variables are named with the same name specified by the cell
range name in Microsoft Excel. Use this syntax when working directly in a Microsoft
Visual Basic macro.

out = MLPutRanges() returns the named cell ranges in a Microsoft Excel worksheet
into MATLAB variables. The variables are named with the same name specified by the
cell range name in Microsoft Excel. In this case, out specifies whether the MLPutRanges
function executed successfully. Use this syntax when working directly in a Microsoft
Visual Basic macro.

Examples

Export Microsoft Excel Named Range to MATLAB in Microsoft Excel Cell
Define a name for a range of cells from cell A1 through cell E1. For instructions about

defining names, see Excel Help and enter the search term: define and use names in
formulas.

4-45

4 Fynctions — Alphabetical List

The name of the range of cells testData appears in the Name Box.

r ™
EH9-©- = Boolkl - Microsoft Excel Iilﬂ‘g
Home | Insert | Page Layc | Formulas | Data | Review | View | Develope | Add-Ins | & e o @ ER

3 % Calibri -1 - v, Al m T 47 A
Paste =2 A Number| Styles | Cells E %
> = o mber| Styles | Cels | S, .
Clipboard ra [F} Alignment Ta Editing MATLAE
testData - (" £l 1 v
A | 8 | ¢ | o | E F G H 1L B
1 1 2 3 4 3 %
2
3 w
4 4 » v | Sheetl Sheet? ~Sheet3 -~ ¥1 4] il | » 1]
Ready | = | Average:3 Count:5 Sum: 15 ||E|@ 100% (=—O—(%) .
W s

To send data in the named range in the current worksheet to MATLAB, execute the
function inside a worksheet cell.

= MLPutRanges()
@| H9-0-= Bookl - Microsoft Excel | = | [E] _23 |
Home | Insert | Page Layc | Formulas | Data | Review | View | Develope | Add-Ins | & e o @ ER
iy o o wr - R
j] L o/, -é‘ E‘_‘I E-or A
Paste = B A A Number, Styles | Cells 8- da-
- f A - - - - -
Clipboard 1 Editing MATLAE
SUM (" X« fr| =mlputranges() ¥
A B C D E F G H [~
1 1 2 3 4 5 %
2 =mlputranges(})
3 w
4 4 » v | Sheetl Sheet? ~Sheet3 -~ ¥1 4] il | » 1]
Edit | = | |EHEHE 100%

After pressing Enter, Microsoft Excel exports the named range testData to the
MATLAB variable testData in the MATLAB workspace.

4-46

MLPutRanges

Carmrmand Window & | Workspace @
'f?.' e to MATLABT Watch this Video, see Exarnples, orre | Mame Walue rin A ax

»» testData] testData [12,3,4,5] 1 5

testData =

Export Microsoft Excel Named Ranges to MATLAB in Microsoft Visual Basic Macro Without
Output

Call the function to send data in the named ranges in the current worksheet to MATLAB.

MLPutRanges
Export Microsoft Excel Named Ranges to MATLAB in Microsoft Visual Basic Macro with Output

Call the function to send data in the named ranges in the current worksheet to MATLAB.

out = MLPutRanges()

out returns 0 if the function succeeded or a string with the corresponding error code if
the function failed.

. “Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

. “Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19

. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

. “Find and Execute MATLAB Function Using MATLAB Function Wizard” on page
1-28

Output Arguments

out — Status
0 | string

4-47

4 Functions — Alphabetical List

Status for execution of MLPutRanges, returned as 0 if the function succeeded, or a string
containing an error code.

See Also

See Also
MLGetMatrix | MLPutMatrix

Topics

“Create Diagonal Matrix Using Microsoft Excel Ribbon” on page 1-16

“Create Diagonal Matrix Using Microsoft Excel Context Menu” on page 1-19

“Create Diagonal Matrix Using Worksheet Cells” on page 1-23

“Create Diagonal Matrix Using VBA Macro” on page 1-26

“Find and Execute MATLAB Function Using MATLAB Function Wizard” on page 1-28
“Executing Spreadsheet Link Functions” on page 1-40

Introduced in R2013b

4-48

MLPutVar

MLPutVar

Create or overwrite MATLAB matrix with data from Microsoft Excel VBA variable

Syntax

MLPutVar ML_var_name, VBA var_name
out = MLPutVar ML_var_name, VBA_var_name

Description

MLPutVar ML_var_name, VBA var_name creates or overwrites matrix ML_var_name
in MATLAB workspace with data in VBA_var_name. Creates ML_var_name if it does
not exist. If ML_var_name exists, this function replaces the contents with data from
VBA_var_name.

out = MLPutVar ML_var_name, VBA_ var_name lets you catch errors when executing

MLPutVar. If MLPutVar fails, then out is a string containing error code. Otherwise, out
is O.

Input Arguments

ML_var_name
Name of MATLAB matrix to create or overwrite.

ML_var_name in quotes directly specifies the matrix name. ML_var_name without
quotes specifies a VBA variable that contains the matrix name as a string.

VBA_var_name
Name of VBA variable whose contents are written to ML_var_name.

Use VBA_ var_name without quotes.

4-49

4 Functions — Alphabetical List

4-50

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Create a MATLAB Matrix Using Data Stored in a VBA Variable

Create (or overwrite) the MATLAB matrix K with the data in the VBA variable DataK:

Sub Put(Q)
MLPutVar "K', DataK
End Sub

. “Create Diagonal Matrix Using VBA Macro” on page 1-26

Tips
+ Use MLPutVar only in a macro subroutine, not in a macro function or in a subroutine

called by a function.

* Empty numeric data cells within VBA_var_name become numeric zeros within the
MATLAB matrix identified by ML_var_name.

+ If any element of VBA_var_name contains string data, VBA_var_name is exported as
a MATLAB cell array. Empty string elements within VBA_var_name become NaNs
within the MATLAB cell array.

See Also

See Also
MLGetVar

Topics
“Create Diagonal Matrix Using VBA Macro” on page 1-26

MLPutVar

“Executing Spreadsheet Link Functions” on page 1-40

Introduced before R2006a

4-51

4 Functions — Alphabetical List

4-52

MLShowMatlabErrors

Return standard Spreadsheet Link errors or full MATLAB errors

Syntax

= MLShowMatlabErrors(flag)
MLShowMatlabErrors flag

Description

= MLShowMatlabErrors(flag) sets the error message type when executing

MATLAB commands using MLEval String in Microsoft Excel. An error displays when
MLEvalString fails. You can display two different types of error messages. At any point,
you can switch between displaying Spreadsheet Link and MATLAB errors. Without

this function, worksheet cells display only Excel error messages. Use this syntax when
working in a worksheet cell.

MLShowMatlabErrors flag works in a VBA macro.

Examples

Display Spreadsheet Link Errors in Worksheet Cell

This Spreadsheet Link code assumes MLEval String returns MATLAB errors upon
failure.

Enter this text in any worksheet cell to display MLEval String failures as Spreadsheet
Link errors.

=MLShowMatlabErrors(''no")

Enter this invalid text in any worksheet cell.

=MLEvalString(‘'sum(2+b);')

This Spreadsheet Link error appears in the calling cell.

MLShowMatlabErrors

#COMMAND!
Display MATLAB Errors in VBA Macro
This VBA code assumes MLEval String returns Spreadsheet Link errors upon failure.

Enter this text at the beginning of a VBA macro to display MLEvalString failures as
MATLAB errors.

MLShowMatlabErrors "yes"

Enter this invalid text in the VBA macro.

out = MLEvalString("'sum(2+b);™)
MsgBox (out)

When running this macro, this MATLAB error appears in a dialog box: ??? Undefined
function or variable "b". For details on running macros, see Excel Help.

. “Create Diagonal Matrix Using Worksheet Cells” on page 1-23
. “Create Diagonal Matrix Using VBA Macro” on page 1-26

Input Arguments

flag — Error message indicator
""no" (default) | ""yes"

Error message indicator, specified as "'no" or "'yes" to determine the type of error
message displayed when MLEvalString fails. To display the standard Spreadsheet Link
errors, specify ''no"". To display the full MATLAB errors, specify "'yes"".

See Also

See Also
MLEvalString

Topics
“Create Diagonal Matrix Using Worksheet Cells” on page 1-23

4-53

4 Functions — Alphabetical List

4-54

“Create Diagonal Matrix Using VBA Macro” on page 1-26
“Executing Spreadsheet Link Functions” on page 1-40
“Worksheet Cell Errors” on page 3-2

“Microsoft Excel Errors” on page 3-5

Introduced in R2006b

MLStartDir

MLStartDir

Specify MATLAB current working folder after startup

Syntax
= MLStartDir(path)

MLStartDir path
out = MLStartDir(path)

Description

= MLStartDir(path) sets the MATLAB working folder after startup. Use this syntax
when working directly in a worksheet.

MLStartDir path sets the MATLAB working folder after startup. Use this syntax in a
VBA macro.

out = MLStartDir(path) lets you catch errors when executing MLStartDir in a VBA

macro. If MLStartDir fails, then out is a string containing error code. Otherwise, out is
0.

Input Arguments

path

Path to the new MATLAB working folder after startup.

Output Arguments
out

Execution status that contains O if the command succeeded. Otherwise, out contains a
string with an error code.

4-55

4 Functions — Alphabetical List

4-56

Examples
Specify MATLAB Working Folder

Set the MATLAB working folder to d:\work after start up in a worksheet cell.
=MLStartDir("'d:\work'™)
Specify MATLAB Working Folder That Includes Spaces

If your folder path includes a space, embed the path in single quotation marks within
double quotation marks.

Set the MATLAB working folder to d=\my work in a VBA macro.

MLStartDir ""d:\my work®"
Specify MATLAB Working Folder with Execution Status

Set the MATLAB working folder to d:\work after start up in a VBA macro. Return the
execution status out.

out = MLStartDir("'d:\work™™)

Tips

* This function does not work like the standard Microsoft Windows Start In setting,
because it does not automatically run startup.mor matlabrc.m in the specified
folder.

* The working folder changes only if you run MATLAB after you run this function.
Running this function while MATLAB is running does not change the working folder
for the current session. In this case, MATLAB uses the specified folder as the working
folder when it is restarted.

See Also

See Also
MLAutoStart

MLStartDir

Introduced in R2006b

4-57

4 Functions — Alphabetical List

4-58

MLUseCellArray

Toggle MLPutMatrix to use MATLAB cell arrays

Syntax

= MLUseCellArray(flag)
MLUseCellArray flag
out = MLUseCellArray(flag)

Description

= MLUseCellArray(flag) specifies whether MLPutMatrix must use cell arrays for
transfer of data (for example, dates). When the Spreadsheet Link software is installed,
the default is "'no". If you change the value of MLUseCel lArray to "'yes", the change
remains in effect the next time a Microsoft Excel session starts. Use this syntax when
working directly in a worksheet.

MLUseCellArray flag specifies whether MLPutMatrix must use cell arrays for
transfer of data. Use this syntax in a VBA macro.

out = MLUseCellArray(flag) lets you catch errors when executing

MLUseCellArray in a VBA macro. If MLUseCel IArray fails, then out is a string
containing error code. Otherwise, out is O.

Input Arguments

flag
Either "yes' or "'no™.

Specify ""'yes' to automatically uses cell arrays for transfer of data structures. Specify
""no" to stop using cell arrays for transfer of data structures.

Default: "'no™

MLUseCellArray

Output Arguments
out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Stop Using Cell Arrays When Transferring Data Structures

Cancel automatic use of cell arrays for easy transfer of data:

MLUseCellArray(''no™)

See Also

See Also
MLPutMatrix

Introduced in R2007a

4-59

4 Functions — Alphabetical List

4-60

MLUseFullDesktop

Specify whether to use full MATLAB desktop or Command Window

Syntax
= MLUseFul IDesktop(flag)

MLUseFul IDesktop flag
out = MLUseFullDesktop(flag)

Description

= MLUseFul IDesktop(flag) sets the MATLAB session to start with the full desktop or
Command Window only. Use this syntax when working directly in a worksheet.

MLUseFul IDesktop flag sets the MATLAB session to start with the full desktop or
Command Window only. Use this syntax in a VBA macro.

out = MLUseFullDesktop(Fflag) lets you catch errors when executing

MLUseFul IDesktop in a VBA macro. If MLUseFul 1Desktop fails, then out is a string
containing error code. Otherwise, out is O.

Input Arguments

Default:
flag
Either "'yes" or "'no".

Specify ""'yes' to start full MATLAB desktop. Specify "'no" to start the Command
Window only.

Default: ""'yes"

MLUseFullDesktop

Output Arguments

out

0 if the command succeeded. Otherwise, a string containing error code.

Examples

Start Only the Command Window

Set the MATLAB session to start with the command window only:

MLUseFul IDesktop(*'no'™)

See Also

See Also
matlabinit | MLClose | MLOpen

Introduced in R2006b

4-61

